首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slamf1, the NKT cell control gene Nkt1   总被引:1,自引:0,他引:1  
Invariant NKT cells play a critical role in controlling the strength and character of adaptive immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. In this study, we report the production and characterization of a NOD.Nkrp1(b).Nkt1(b) congenic mouse strain, apply microarray expression analyses to limit candidate genes within the 95% confidence region, identify Slamf1 (encoding signaling lymphocyte activation molecule) and Slamf6 (encoding Ly108) as potential candidates, and demonstrate retarded signaling lymphocyte activation molecule expression during T cell development of NOD mice, resulting in reduced expression at the CD4(+)CD8(+) stage, which is consistent with decreased NKT cell production and deranged tolerance induction in NOD mice.  相似文献   

2.
The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the surface receptor signaling lymphocytic activation molecule (SLAM) on myeloid dendritic cells (mDC) to iNKT cells is crucial for NKT2 orientation. Additionally, we demonstrate that the impaired acquisition of an NKT2 cytokine phenotype in nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes is due to defective SLAM-induced signals generated by NOD mDC. Mature mDC of C57BL/6 mice express SLAM and induce C57BL/6 or NOD iNKT cells to acquire a predominant NKT2 cytokine phenotype in response to antigenic stimulation with the iNKT cell-specific Ag, the alpha-galactosylceramide. In contrast, mature NOD mDC express significantly lower levels of SLAM and are unable to promote GATA-3 (the SLAM-induced intracellular signal) up-regulation and IL-4/IL-10 production in iNKT cells from NOD or C57BL/6 mice. NOD mice carry a genetic defect of the Slamf1 gene that is associated with reduced SLAM expression on double-positive thymocytes and altered iNKT cell development in the thymus. Our data suggest that the genetic Slamf1 defect in NOD mice also affects SLAM expression on other immune cells such as the mDC, thus critically impairing the peripheral differentiation of iNKT cells toward a regulatory NKT2 type.  相似文献   

3.
Type 1 NKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. Herein, we report the production and characterization of a NOD.Nkrp1(b).Nkt2b(b) congenic mouse strain, which has increased thymic and peripheral NKT cells, a decreased incidence of type 1 diabetes, and enhanced cytokine responses in vivo and increased proliferative responses in vitro following challenge with alpha-galactosylceramide. The 19 highly differentially expressed candidate genes within the congenic region identified by microarray expression analyses included Pxmp4. This gene encodes a peroxisome-associated integral membrane protein whose only known binding partner is Pex19, an intracellular chaperone and component of the peroxisomal membrane insertion machinery encoded by a candidate for the NKT cell control gene Nkt1. These findings raise the possibility that peroxisomes play a role in modulating glycolipid availability for CD1d presentation, thereby influencing NKT cell function.  相似文献   

4.
Genetic control of NKT cell numbers maps to major diabetes and lupus loci   总被引:6,自引:0,他引:6  
Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1(b) mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/alpha-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.  相似文献   

5.
The B7-1 (CD80) molecule provides costimulatory function for the activation of T helper lymphocytes upon encounter with antigen. To investigate the role of this molecule in thymocyte maturation, we have generated transgenic (Tg) mice in which CD80 expression is driven by the keratin 14 promoter (K14). This overexpression of CD80 resulted in the loss of detectable cell surface CD28 expression on thymocytes and a significant reduction in both the surface T cell receptor expression and the ratio of CD4(+) to CD8(+) single-positive thymocytes in Tg animals compared to nontransgenic (non-Tg) controls. While many of these defects were transient, the significant decrease in CD4(+) versus CD8(+) T cell ratio persisted peripherally. Peripheral T cells from these Tg mice were found to be significantly hyporesponsive to T cell mitogens and in mixed leukocyte reaction, effects that our data indicate are due to reduced IL-2 production by Tg T cells upon activation. Despite these functional defects, immunization with both complex and simple protein antigens produced no differences in the proliferative or humoral responses to these antigens between Tg and non-Tg groups. These data indicate that thymic CD80 signaling results in the deletion of significant numbers of CD4(+) T cells but does not culminate in antigen-specific immunodeficiency.  相似文献   

6.
Whether intrathymic-positive and -negative selection of conventional alpha beta T cells occur in anatomically distinct sites is a matter of debate. By using a system composed of two distinct immune receptors, the Y-Ae mAb and the 1H3.1 (V alpha 1/V beta 6) TCR, both directed against the 52--68 fragment of the I-E alpha-chain (E alpha 52--68) bound to I-A(b), we examined the occurrence of negative selection imposed in vivo by a self-peptide-self-MHC class II complex with differential tissue expression. 1H3.1 TCR-transgenic (Tg) mice were bred to mice having an I-E alpha transgene with expression directed to all MHC class II-positive cells, restricted to thymic epithelial cells, or restricted to B cells, dendritic cells, and medullary thymic epithelial cells. All 1H3.1 TCR/I-E alpha double-Tg mice revealed a severely diminished thymic cellularity. Their lymph node cells were depleted of V beta 6(+)CD4(+) cells and were unresponsive to E alpha 52--68 in vitro. The absolute number of CD4(+)CD8(+) thymocytes was drastically reduced in all combinations, indicating that negative selection caused by an endogenously expressed self-determinant can effectively occur in the thymic cortex in vivo. Moreover, both cortical epithelial cells and, interestingly, the few cortical dendritic cells were able to support negative selection of CD4(+)CD8(+) thymocytes, albeit with a distinct efficiency. Collectively, these observations support a model where, in addition to the avidity of the thymocyte/stromal cell interaction, in vivo negative selection of autoreactive TCR-Tg T cells is determined by accessibility to self-peptide-self-MHC complexes regardless of the anatomical site.  相似文献   

7.
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.  相似文献   

8.
In nonobese diabetic (NOD) mice, T cells play a major role in mediating autoimmunity against pancreatic islet beta-cells. We and others previously reported that age-related alterations in the thymic and peripheral T cell repertoire and function occur in prediabetic NOD mice. To study the mechanism responsible for these T cell alterations, we examined whether a defect exists in the thymus of NOD mice at the level of TCR-mediated signaling after activation by Con A and anti-CD3. We found that thymocytes from NOD mice respond weakly to Con A- and anti-CD3-induced proliferation, compared with thymocytes from control BALB/c, BALB.B, (BALB.B x BALB.K)F1, C57BL/6, and nonobese non-diabetic mice. This defect correlates with the onset of insulitis, because it can be detected at 7 to 8 weeks of age, whereas younger mice displayed a normal T cell responsiveness. Thymic T cells from (NOD x BALB/c)F1 mice, which are insulitis- and diabetes-free, exhibit an intermediate stage of unresponsiveness. This T cell defect is not due to a difference in the level of CD3 and IL-2R expression by NOD and BALB/c thymocytes, and both NOD CD4+ CD8- and CD4- CD8+ mature thymic T cells respond poorly to Con A. BALB/c but not NOD thymic T cells respond to Con A in the presence of either BALB/c or NOD thymic APC, suggesting that the thymic T cell defect in NOD mice is intrinsic to NOD thymic T cells and is not due to an inability of NOD APC to provide a costimulatory signal. The defect can be partially reversed by the addition of rIL-2 to NOD thymocytes. To determine whether a defect in signal transduction mediates this NOD thymic T cell unresponsiveness, we tested whether these cells elevate their intracellular free Ca2+ ion concentration in response to Con A. An equivalent Con A-induced increase in Ca2+ ion concentration in both NOD and BALB/c thymocytes was observed, suggesting a normal coupling between the CD3 complex and phospholipase C in NOD thymocytes. In contrast to their low proliferative response to Con A or anti-CD3, NOD thymocytes respond normally (i.e., as do BALB/c thymocytes) to the combinations of PMA plus the Ca2+ ionophore ionomycin and PMA plus Con A but weakly to Con A plus ionomycin. Our data suggest that the age-related NOD thymocyte unresponsiveness to Con A and anti-CD3 results from a defect in the signaling pathway of T cell activation that occurs upstream of protein kinase C activation.  相似文献   

9.
A role for regulatory lymphocytes has been demonstrated in the pathogenesis of type 1 diabetes in the NOD mouse but the nature of these cells is debated. CD1d-restricted NKT lymphocytes have been implicated in this process. Previous reports of reduced diabetes incidence in NOD mice in which the numbers of NKT cells are artificially increased have been attributed to the enhanced production of IL-4 by these cells and a role for classical NKT cells, using the Valpha14-Jalpha18 rearrangement. We now show that overexpression in NOD mice of CD1d-restricted TCR Valpha3.2(+)Vbeta9(+) NKT cells producing high levels of IFN-gamma but low amounts of IL-4 leads to prevention of type 1 diabetes, demonstrating a role for nonclassical CD1d-restricted NKT cells in the regulation of autoimmune diabetes.  相似文献   

10.
Murine fetal thymic organ culture (FTOC) was used to investigate the mechanism by which a lack of adenosine deaminase (ADA) leads to a failure of T cell production in the thymus. We previously showed that T cell development was inhibited beginning at the CD4(-)CD8(-)CD25(+)CD44(low) stage in ADA-deficient FTOC initiated at day 15 of gestation when essentially all thymocytes are CD4(-)CD8(-). In the present study, we asked whether thymocytes at later stages of differentiation would also be sensitive to ADA inhibition by initiating FTOC when substantial numbers of CD4(+)CD8(+) thymocytes were already present. dATP was highly elevated in ADA-deficient cultures, and the recovery of alphabeta TCR(+) thymocytes was inhibited by 94%, indicating that the later stages of thymocyte differentiation are also dependent upon ADA. ADA-deficient cultures were partially rescued by the pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or by the use of apoptotic protease-activating factor-1-deficient mice. Rescue was even more dramatic, with 60- to >200-fold increases in the numbers of CD4(+)CD8(+) cells, when FTOC were performed with an inhibitor of adenosine kinase, the major thymic deoxyadenosine phosphorylating enzyme, or with bcl-2 transgenic mice. dATP levels were normalized by treatment with either carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or an adenosine kinase inhibitor, but not in cultures with fetal thymuses from bcl-2 transgenic mice. These data suggest that ADA deficiency leads to the induction of mitochondria-dependent apoptosis as a consequence of the accumulation of dATP derived from thymocytes failing the positive/negative selection checkpoint.  相似文献   

11.
A numerical and functional deficiency in invariant NKT (iNKT) cells detectable by 3 wk of age in the thymus and spleen mediates the pathogenesis of type 1 diabetes in NOD mice, but the stage of T cell development at which this deficiency first occurs is unknown. We report in this study that this deficiency develops after the CD4(+)CD8(+) double-positive stage of thymic T cell development and is due to a lineage-specific depletion of CD4(-)CD8(-) double-negative alphabeta T cells and iNKT cells from the thymus between embryonic day 18 and day 1 after birth. Thus, an inheritable defect in a lineage fate decision that elicits a deficiency in fetal thymic iNKT cell development may predispose to susceptibility to type 1 diabetes.  相似文献   

12.
The interaction of thymocytes with thymic epithelial cells in the absence of an exogenous antigen was studied in vitro. Thymic, but not splenic epithelial cells induced apoptosis of thymocytes. A thymic epithelial cell line (TEC) induced apoptosis of thymocytes but not of splenic T-cells. The target population for TEC-induced death were immature CD4(+)8(+) (double positive), but not mature single positive thymocytes. TEC also induced DNA fragmentation in day 18 foetal thymocytes, most of which are CD4(+)8(+) cells. Radiation leukemia virus (RadLV)-transformed thymic lymphoma clones expressing various phenotypes reflected this sensitivity, in that a CD4(+)8(+)3(+) clone apoptosed by thymic epithelial cells or TEC. Other, single positive or double negative clones were resistant. Thymocytes from C3H (H-2(k)), C57BL/6 (H-2(b)) and Balb/C (H-2(d)) mice apoptosed equally in response to either C57BL/6 thymic epithelial cells or TEC (H-2(b) x H-2(d)). Likewise, thymocytes from MRLIpr((-/-)) and B6Ipr((-/-)) mice, which do not express CD95 were also apoptosed by TEC.The data suggest that thymic epithelial cells induce MHC non-restricted, Fas-independent apoptosis of immature thymocytes. This response may reflect a mechanism through which thymocytes expressing TcR with no affinity to self MHC/peptide complexes are eliminated.  相似文献   

13.
In thymocyte ontogeny, Tcr-a genes rearrange after Tcr-b genes. TCR alpha beta transgenic (Tg) mice have no such delay, consequently expressing rearranged TCR alpha beta proteins early in the ontogeny. Such mice exhibit reduced thymic cellularity and accumulate mature, nonprecursor TCR(+)CD8(-)4(-) thymocytes, believed to be caused by premature Tg TCR alpha beta expression via unknown mechanism(s). Here, we show that premature expression of TCR alpha beta on early thymocytes curtails thymocyte expansion and impairs the CD8(-)4(-) --> CD8(+)4(+) transition. This effect is accomplished by two distinct mechanisms. First, the early formation of TCR alpha beta appears to impair the formation and function of pre-TCR, consistent with recently published results. Second, the premature TCR alpha beta contact with intrathymic MHC molecules further pronounces the block in proliferation and differentiation. These results suggest that the benefit of asynchronous Tcr-a and Tcr-b rearrangement is not only to minimize waste during thymopoiesis, but also to simultaneously allow proper expression/function of the pre-TCR and to shield CD8(-)4(-) thymocytes from TCR alpha beta signals that impair thymocyte proliferation and CD8(-)4(-) --> CD8(+)4(+) transition.  相似文献   

14.
CD4(+)- and CD8(+)-T-cell death is a frequent immunological dysfunction associated with the development of human AIDS. We studied a murine model of AIDS, the CD4C/HIV transgenic (Tg) mouse model, to assess the importance of the apoptotic pathway in human immunodeficiency virus type 1 (HIV-1) pathogenesis. In these Tg mice, Nef is the major determinant of the disease and is expressed in immature and mature CD4(+) T cells and in cells of the macrophage/myeloid lineage. We report here a novel AIDS-like phenotype: enhanced death, most likely by apoptosis (as assessed by 7-aminoactinomycin D and annexin V/propidium iodide staining), of Tg thymic and peripheral CD4(+) and CD8(+) T cells. The Tg CD4(+) and CD8(+) T cells were also more susceptible to cell death after activation in vitro in mixed lymph node (LN) cultures. However, activation-induced cell death was not higher in Tg than in non-Tg-purified CD4(+) T cells. In addition, expression of Fas and FasL, assessed by flow cytometry, was increased in CD4(+) and CD8(+) T cells from Tg mice compared to that of non-Tg littermates. Despite the enhanced expression of Fas and FasL on Tg CD4(+) and CD8(+) T cells, Fas (lpr/lpr) and FasL (gld/gld) mutant CD4C/HIV Tg mice developed an AIDS-like disease indistinguishable from lpr/+ and gld/+ CD4C/HIV Tg mice, including loss of CD4(+) T cells. Similarly, CD4C/HIV Tg mice homozygous for mutations of two other genes implicated in cell death (interleukin-1beta-converting enzyme [ICE], tumor necrosis factor receptor 1 [TNFR-1]) developed similar AIDS-like disease as their respective heterozygous controls. Moreover, the double-Tg mice from a cross between the Bcl2/Wehi25 and CD4C/HIV Tg mice showed no major protection against disease. These results represent genetic evidence for the dispensable role of Fas, FasL, ICE, and TNFR-1 on the development of both T-cell loss and organ disease of these Tg mice. They also provide compelling evidence on the lack of protection by Bcl2 against Tg CD4(+)-T-cell death. In view of the high resemblance between numerous phenotypes observed in the CD4C/HIV Tg mice and in human AIDS, our findings are likely to be relevant for the human disease.  相似文献   

15.
Severe defect in thymic development in an insertional mutant mouse model   总被引:1,自引:0,他引:1  
Transgenic mice were generated expressing NK1.1, an NK cell-associated receptor, under control of the human CD2 promoter. Unexpectedly, one of the founder lines, Tg66, showed a marked defect in thymic development characterized by disorganized architecture and small size. Mapping of the transgene insertion by fluorescence in situ hybridization revealed integration in chromosome 2, band G. Already from postnatal day 3, the thymic architecture was disturbed with a preferential loss of cortical thymic epithelial cells, a feature that became more pronounced over time. Compared with wild-type mice, total thymic cell numbers decreased dramatically between 10 and 20 days of age. Thymocytes isolated from adult Tg66 mice were predominantly immature double-negative cells, indicating a block in thymic development at an early stage of differentiation. Consequently, Tg66 mice had reduced numbers of peripheral CD4(+) and CD8(+) T cells. Bone marrow from Tg66 mice readily reconstituted thymi of irradiated wild-type as well as RAG-deficient mice. This indicates that the primary defect in Tg66 mice resided in nonhemopoietic stromal cells of the thymus. The phenotype is observed in mice heterozygous for the insertion and does not resemble any known mutations affecting thymic development. Preliminary studies in mice homozygous for transgene insertion reveal a more accelerated and pronounced phenotype suggesting a semidominant effect. The Tg66 mice may serve as a useful model to identify genes regulating thymic epithelial cell differentiation, thymic development, and function.  相似文献   

16.
17.
We generated mice expressing a human type III CIITA transgene (CIITA Tg) under control of the CD4 promoter to study the role of CIITA in CD4 T cell biology. The transgene is expressed in peripheral CD4 and CD8 T cells, as well as in thymocytes. When CD4 T cells were differentiated towards the Th2 lineage, both control and CIITA Tg Th2 cells expressed similar levels of Th2 cytokines. Th1 cells from control and CIITA Tg mice cells produced comparable levels of IFN-gamma. CIITA Tg Th1 cells also expressed IL-4, IL-5, and IL-13 in the absence of Stat6. There was an approximate 10-fold increase in the number of peripheral na?ve CD4 T cells and NK1.1- thymocytes producing IL-4 from CIITA Tg mice compared to control mice. Finally, Th1 cells from irradiated control mice reconstituted with CIITA Tg bone marrow displayed the same cytokine production profiles as Th1 cells from CIITA Tg mice. Together, our data demonstrate that CIITA expression pre-disposes CD4 T cells to produce Th2 type cytokines. Moreover, phenotypic similarities between Th1 cells expressing the CIITA transgene and CIITA deficient Th1 cells suggest that the role of CIITA in cytokine regulation is complex and may reflect both direct and indirect mechanisms of T cell development and differentiation.  相似文献   

18.
19.
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.  相似文献   

20.
In contrast to peripheral lymphoid organs, in the liver a high proportion of T cells are CD4+NKT cells. We have previously reported that LFA-1 plays a pivotal role in the homing of thymic CD4+NKT cells to the liver. In the present study, we further assessed which cell type participates in the homing of thymic CD4+NKT cells to the liver. The accumulation of donor thymocyte-derived CD4+NKT cells in the liver of SCID mice that had been reconstituted with thymocytes from C57BL/6 mice was severely impaired by in vivo depletion of NK cells, but not Kupffer cells in recipients. These results suggest that NK cells participate in the homing of thymic CD4+NKT cells to the liver. We assume that LFA-1 expressed on NK cells is involved in this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号