首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

2.
In vitro studies of hepatocytes have implicated over-activation of c-Jun N-terminal kinase (JNK) signaling as a mechanism of tumor necrosis factor-alpha (TNF)-induced apoptosis. However, the functional significance of JNK activation and the role of specific JNK isoforms in TNF-induced hepatic apoptosis in vivo remain unclear. JNK1 and JNK2 function was, therefore, investigated in the TNF-dependent, galactosamine/lipopolysaccharide (GalN/LPS) model of liver injury. The toxin GalN converted LPS-induced JNK signaling from a transient to prolonged activation. Liver injury and mortality from GalN/LPS was equivalent in wild-type and jnk1-/- mice but markedly decreased in jnk2-/- mice. This effect was not secondary to down-regulation of TNF receptor 1 expression or TNF production. In the absence of jnk2, the caspase-dependent, TNF death pathway was blocked, as reflected by the failure of caspase-3 and -7 and poly(ADP-ribose) polymerase cleavage to occur. JNK2 was critical for activation of the mitochondrial death pathway, as in jnk2-/- mice Bid cleavage and mitochondrial translocation and cytochrome c release were markedly decreased. This effect was secondary to the failure of jnk2-/- mice to activate caspase-8. Liver injury and caspase activation were similarly decreased in jnk2 null mice after GalN/TNF treatment. Ablation of jnk2 did not inhibit GalN/LPS-induced c-Jun kinase activity, although activity was completely blocked in jnk1-/- mice. Toxic liver injury is, therefore, associated with JNK over-activation and mediated by JNK2 promotion of caspase-8 activation and the TNF mitochondrial death pathway through a mechanism independent of c-Jun kinase activity.  相似文献   

3.
A method which allows direct cloning of intracellular substrates for receptor tyrosine kinases (RTKs) was developed. By applying this technique to the study of the epidermal growth factor receptor (EGFR) signaling pathway, we have isolated a cDNA, designated eps8, which predicts a approximately 92 kDa protein containing an SH3 domain. Eps8 also contains a putative nuclear targeting sequence. Antibodies specific to the eps8 gene product recognize a protein of M(r) 97 kDa and a minor 68 kDa component, which are closely related, as demonstrated by V8 proteolytic mapping. The product of the eps8 gene is tyrosine-phosphorylated in vivo following EGF stimulation of intact cells and associates with the EGFR, despite the lack of a functional SH2 domain. Several other RTKs are also able to phosphorylate p97eps8. Thus, the eps8 gene product represents a novel substrate for RTKs. Adoptive expression of the eps8 cDNA in fibroblastic or hematopoietic target cells expressing the EGFR resulted in increased mitogenic response to EGF, implicating the eps8 gene product in the control of mitogenic signals.  相似文献   

4.
eps8, a recently identified tyrosine kinase substrate, has been shown to augment epidermal growth factor (EGF) responsiveness, implicating it in EGF receptor (EGFR)-mediated mitogenic signaling. We investigated the status of eps8 phosphorylation in normal and transformed cells and the role of eps8 in transformation. In NIH 3T3 cells overexpressing EGFR (NIH-EGFR), eps8 becomes rapidly phosphorylated upon EGF stimulation. At receptor-saturating doses of EGF, approximately 30% of the eps8 pool is tyrosine phosphorylated. Under physiological conditions of activation (i.e., at low receptor occupancy), corresponding to the 50% effective dose of EGF for mitogenesis, approximately 3 to 4% of the eps8 contains phosphotyrosine. In human tumor cell lines, we detected constitutive tyrosine phosphorylation of eps8, with a stoichiometry (approximately 5%) similar to that associated with potent mitogenic response in NIH-EGFR cells. Overexpression of eps8 was able to transform NIH 3T3 cells under limiting conditions of activation of the EGFR pathway. Concomitant tyrosine phosphorylation of eps8 and shc, but not of rasGAP, phospholipase C-gamma, and eps15, was frequently detected in tumor cells. This suggested that eps8 and shc might be part of a pathway which is preferentially selected in some tumors. Cooperation between these two transducers was further indicated by the finding of their in vivo association. This association was, at least in part, dependent on recognition of shc by the SH3 domain of eps8. Our results indicate that eps8 is physiologically part of the EGFR-activated signaling and that its alterations can contribute to the malignant phenotype.  相似文献   

5.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

6.
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family. In mammalian genomes, three genes encode the JNK family. To evaluate JNK function, mice have been created with deletions in one or more of three Jnk genes. Initial studies on jnk1(-/-) or jnk2(-/-) mice have shown roles for these JNKs in the immune system whereas studies on jnk3(-/-) mice have highlighted roles for JNK3 in the nervous system. Further studies have highlighted the contributions of JNK1 and/or JNK2 to a range of biological and pathological processes. These include bone remodelling and joint disease, inflammatory and autoimmune diseases, obesity, diabetes, cardiovascular disease, liver disease and tumorigenesis in addition to effects in neurons. These results emphasise the differences in the roles played by JNK isoforms in vivo and suggest that the design of JNK inhibitors for subsequent therapeutic uses may benefit from selective inhibition of individual JNK isoforms.  相似文献   

7.
An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals.  相似文献   

8.
The discovery of the role of P2Y(12) receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y(2) and P2Y(11) receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y(2) receptor, but not by NF-157, a P2Y(11)-selective antagonist, suggesting a role for the P2Y(2) receptor. In addition, P2Y(2) receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca(2+) pathway did not affect P2Y(2) receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y(2) receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury.  相似文献   

9.
Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.  相似文献   

10.
Epidermal growth factor receptor variant III (EGFRvIII), the most common EGFR mutation, is associated with cell migration of glioblastoma multiforme (GBM) cases; however, the mechanism has not been elucidated. In this study, we found that the EGFRvIII-promoted glioma cell migration was closely linked to high levels of tyrosine phosphorylation in focal adhesion kinase (FAK) Y397. We also demonstrated that EGFRvIII formed a complex with FAK, resulting in enhanced tyrosine phosphorylation levels of FAK Y397 and EGFR Y1068. After knockdown of FAK expression via anti-FAK shRNA, the U87ΔEGFR cell migration was significantly inhibited, accompanying with the reduced phosphorylation levels of extracellular signal-regulated kinase (ERK1/2). Furthermore, the role of ERK1/2 in FAK-regulated cell migration was confirmed. Taken together, our results suggest that FAK and its downstream molecule ERK were involved in EGFRvIII-promoted glioma cell migration in U87ΔEGFR cells.  相似文献   

11.
Signalling through protein tyrosine kinases (PTKs) is critical in the regulation of important cellular processes and its deregulation is associated with pathophysiological disorders such as cancer. We investigated the function of the PTK spleen tyrosine kinase (Syk) in the regulation of growth factor signalling pathways in human mammary epithelial cells. Our results show that downregulation of endogenous Syk expression enhances the ligand-induced activity of the epidermal growth factor receptor (EGFR) but not that of the closely related human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3) receptors. Moreover, Syk function interfered with EGFR-mediated cell responses such as proliferation and survival of mammary epithelial cells. A mechanistic link between Syk and EGFR is further supported by the colocalisation of the two PTKs in membrane fractions as well as the regulatory feedback effects of the EGFR kinase on Syk activity. Our findings demonstrate that Syk acts a negative control element of EGFR signalling.  相似文献   

12.
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.  相似文献   

13.
ACK1 (activated Cdc42-associated kinase 1), a cytoplsmic tyrosine kinase, is implicated in metastatic behavior, cell spreading and migration, and epidermal growth factor receptor (EGFR) signaling. The function of ACK1 in the regulation of receptor tyrosine kinases requires a C-terminal region that demonstrates a significant homology to the EGFR binding domain of MIG6. In this study, we have identified additional receptor tyrosine kinases, including Axl, leukocyte tyrosine kinase, and anaplastic lymphoma kinase, that can bind to the ACK1/MIG6 homology region. Unlike the interaction between MIG6 and EGFR, our data suggest that these receptor tyrosine kinases require the adaptor protein Grb2 for efficient binding, which interacts with highly conserved proline-rich regions that are conserved between ACK1 and MIG6. We have focused on Axl and compared how ACK1/Axl differs from the ACK1/EGFR axis by investigating effects of knockdown of endogenous ACK1. Although EGFR activation promotes ACK1 turnover, Axl activation by GAS6 does not; interestingly, the reciprocal down-regulation of GAS6-stimulated Axl is blocked by removing ACK1. Thus, ACK1 functions in part to control Axl receptor levels. Silencing of ACK1 also leads to diminished ruffling and migration in DU145 and COS7 cells upon GAS6-Axl signaling. The ability of ACK1 to modulate Axl and perhaps anaplastic lymphoma kinase (altered in anaplastic large cell lymphomas) might explain why ACK1 can promote metastatic and transformed behavior in a number of cancers.  相似文献   

14.
15.
LPA (lysophosphatidic acid) is a bioactive phospholipid having diverse effects on various types of tissues. When NMuMG (normal murine mammary gland) cells were cultured in the presence of 0-10 μM LPA, cell numbers were increased by dose dependency for the 6-day culture periods (P<0.05). In DNA synthesis assay, 10 μM LPA induced 4.5-fold more DNA synthesis compared with control (P<0.05). In addition, the cultured cell density in the given area was increased by LPA treatment. MMP (matrix metalloproteinase) inhibitor GM6001 and EGFR [EGF (epidermal growth factor) receptor] tyrosine kinase inhibitor AG1478 [tyrphostin AG1478, 4-(3-chloroanilino)-6,7-dimethoxyquinazoline] significantly decreased LPA-induced DNA synthesis and cell growth without cell death (P<0.05). To test the hypothesis that LPA-induced cell growth is mediated through LPA subtype receptors, LPA subtype receptor gene expressions were amplified by PCR. NMuMG cells expressed LPA1 and LPA2 receptor genes in the presence of 10% FBS (fetal bovine serum). LPA treatments increased ERK1/2 (extracellular-signal-regulated kinase) phosphorylation at 30 min and then dephosphorylated at 2 h after treatment. LPA treatment phosphorylated at tyrosine residues on a variety of Gi and PI3-dependent signal transducers in NMuMG cells. These results suggest that LPA subtype receptors play a role as the active transactivator of EGFR-associated kinases as well as direct growth regulator in mammary tissues.  相似文献   

16.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

17.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   

18.
Mice lacking both c-Jun-NH(2)-terminal kinases (JNK1 and JNK2) were generated to define their roles in development. Jnk1/jnk2 double mutant fetuses die around embryonic day 11 (E11) and were found to display an open neural tube (exencephaly) at the hindbrain level with reduced apoptosis in the hindbrain neuroepithelium at E9.25. In contrast, a dramatic increase in cell death was observed one day later at E10.5 in both the hindbrain and forebrain regions. Moreover, about 25% of jnk1-/-jnk2+/- fetuses display exencephaly probably due to reduced levels of JNK proteins, whereas jnk1+/-jnk2-/- mice are viable. These results assign both pro- and anti-apoptotic functions for JNK1 and JNK2 in the development of the fetal brain.  相似文献   

19.
20.
Regulated activation of the highly conserved Ras GTPase is a central event in the stimulation of cell proliferation, motility, and differentiation elicited by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR). In fibroblasts, this involves formation and membrane localization of Shc.Grb2.Sos complexes, which increases the rate of Ras guanine nucleotide exchange. In order to control Ras-mediated cell responses, this activity is regulated by receptor down-regulation and a feedback loop involving the dual specificity kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK). We investigated the role of EGFR endocytosis in the regulation of Ras activation. Of fundamental interest is whether activated receptors in endosomes can participate in the stimulation of Ras guanine nucleotide exchange, because the constitutive membrane localization of Ras may affect its compartmentalization. By exploiting the differences in postendocytic signaling of two EGFR ligands, epidermal growth factor and transforming growth factor-alpha, we found that activated EGFR located at the cell surface and in internal compartments contribute equally to the membrane recruitment and tyrosine phosphorylation of Shc in NR6 fibroblasts expressing wild-type EGFR. Importantly, both the rate of Ras-specific guanine nucleotide exchange and the level of Ras-GTP were depressed to near basal values on the time scale of receptor trafficking. Using the selective MEK inhibitor PD098059, we were able to block the feedback desensitization pathway and maintain activation of Ras. Under these conditions, the generation of Ras-GTP was not significantly affected by the subcellular location of activated EGFR. In conjunction with our previous analysis of the phospholipase C pathway in the same cell line, this suggests a selective continuation of specific signaling activities and cessation of others upon receptor endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号