首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main aim of this study was to compare the reaction of quiescent and proliferating, i.e. phytohemagglutinin (PHA)-stimulated, human peripheral blood mononuclear cells (PBMCs) to gamma-radiation, and analyse changes of proteins related to repair of DNA damage and apoptosis, such as gammaH2A.X, p53, p53 phosphorylation at serines-15 and -392, and p21 and their dose dependence. Freshly isolated PBMCs in peripheral blood are predominantly quiescent, in G(0) phase, and with very low amounts of proteins p53 and p21. Using confocal microscopy we detected dose dependent (0.5-5 Gy) induction of foci containing gammaH2A.X (1 h after gamma-ray exposure), which are formed around radiation-induced double strand breaks of DNA. Apoptosis was detected from 24 h after irradiation by the dose of 4 Gy onwards by Annexin V binding and lamin B cleavage. Seventy two hours after irradiation 70% of CD3(+) lymphocytes were A(+). Neither increase in p53 nor its phosphorylation on serine-392 after irradiation was detected in these cells. However, massive increase in p21 (cyclin-dependent kinase inhibitor 1A) was detected after irradiation, which can be responsible for late occurrence of apoptosis in these quiescent cells. PHA-stimulation itself (72 h) caused an increase in early apoptosis (A(+)PI(-)) in comparison to non-stimulated PBMCs (38% A(+) resp. 13.4%). After PHA-stimulation also the amount of gammaH2A.X, p53, and p21 increased, but no phosphorylation of p53 on serine-392 or -15 was detected. Reaction to gamma-radiation was different in PHA-stimulated lymphocytes: the p53 pathway was activated and p53 was phosphorylated on serines-15 and -392 4 h after irradiation by the dose of 4 Gy. Phosphorylation of p53 at serine-15 increased in a dose-dependent manner in the studied dose range 0.2-7.5 Gy. Also the amount of p21 increased after irradiation. Seventy two hours after irradiation of PHA-stimulated CD3(+) T lymphocytes by the dose of 4 Gy 65% of cells were A(+).  相似文献   

2.
Effects of ionizing radiation registered in cells after low dose irradiation are still poorly understood. A pulsed mode of irradiation is even more problematic in terms of predicting the radiation-induced response in cells. Thus, the aim of this paper was to study and analyze the effects of dose and frequency of pulsed X-rays on the frequency of radiation-induced DNA double-strand breaks and their repair kinetics in human peripheral blood lymphocytes in vitro. Analysis of radiation-induced gammaH2AX and 53BP1 repair foci was used to assess the DNA damage in these cells. The dose-response curve of radiation-induced foci of both proteins has shown deviations from linearity to a higher effect in the 12-32 mGy dose range and a lower effect at 72 mGy. The dose-response curve was linear at doses higher than 100 mGy. The number of radiation-induced gammaH2AX and 53BP1 foci depended on the frequency of X-ray pulses: the highest effect was registered at 13 pulses per second. Moreover, slower repair kinetics was observed for those foci induced by very low doses with a nonlinear dose-response relationship.  相似文献   

3.
An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. Received: 27 February 1997 / Accepted in revised form: 14 May 1997  相似文献   

4.
In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields.  相似文献   

5.
We have tested the ability of T4 DNA ligase to rejoin radiation-induced DNA strand breaks in living hamster cells (CHO-K1, EM9, xrs-5). T4 DNA ligase was introduced into cells by electroporation prior to x-irradiation. Single- and double-strand breaks were measured by the alkaline comet assay technique, and double-strand breaks (DSBs) were evaluated by the pulsed-field gel electrophoresis method. In the comet assay, the three cell lines showed reduced tail moments following pretreatment with T4 DNA ligase, both directly after irradiation and after repair incubation for 4 h. Similarly, the results obtained from pulsed-field gel electrophoresis showed reduced DSB frequencies after pretreatment with T4 DNA ligase. We conclude that exogeneous T4 ligase contributes to rejoining of radiation-induced strand breaks.  相似文献   

6.
It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined gamma-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose response increased as a linear function of gamma-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair.  相似文献   

7.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

8.
Modulating the amount of radiation-induced apoptosis by administering antioxidant vitamins offers a possible way to influence radiation-induced side effects in normal tissues. Therefore, we investigated the effect of beta-carotene, vitamin C and alpha-tocopherol on radiation-induced apoptosis in cells in culture. Human T-lymphoblastic MOLT-3 cells were irradiated with a dose of 3 Gy 1 h after or immediately prior to the addition of vitamins in three concentrations (0.01 microM, 1 microM and 100 microM). Eight hours later, apoptosis was scored morphologically by staining the nuclear DNA with Hoechst 33342. When given prior to irradiation, beta-carotene and vitamin E reduced the amount of radiation-induced apoptosis significantly at concentrations of 0.01 microM and 1 microM. In contrast, vitamin C did not show any protective effect when given at these two concentrations and caused a slight but significant radiosensitization at 100 microM. At 0.01 microM, all combinations of two vitamins showed a protective effect. This was also observed for the combination of all three vitamins at concentrations of 0.01 and 1 microM. When given immediately after irradiation, each of the three vitamins showed a protective effect at 0.01 microM. In addition, the combination of alpha-tocopherol and vitamin C reduced radiation-induced apoptosis slightly when given at 1 microM. In all other cases, no statistically significant modulation of radiation-induced apoptosis was observed. In our experimental system, the protective effect of beta-carotene and vitamin E was dependent on concentration and occurred only in the micromolar and sub-micromolar concentration range, while vitamin C alone, but not in combinations, had a sensitizing effect, thus arguing for a careful consideration of vitamin concentrations in clinical settings.  相似文献   

9.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

10.
MOLT-4 cells undergo apoptosis after X irradiation. A radiosensitive variant, MOLT-4N1, and a radioresistant variant, MOLT-4N2, have been studied with respect to their radiosensitivity and its relationship to the levels of TP53 protein (formerly known as p53). X irradiation induces apoptosis in both cell lines with the following difference: The induction of apoptosis in MOLT-4N2 cells occurred later than in MOLT-4N1 cells as determined by the morphological changes and DNA fragmentation. The levels of cell death measured by the dye exclusion test coincided with the levels of apoptosis in both cell lines, suggesting that radiation-induced cell killing is determined by the induction of apoptosis. Unirradiated MOLT-4N1 cells contained a significantly higher intracellular level of TP53 protein and a much higher level of TP53 mRNA compared to MOLT-4N2 cells. X irradiation led to an accumulation of TP53 protein in both cell lines that was greater in MOLT-4N1 cells. This accumulation of TP53 protein preceded changes in DNA degradation and ladder formation and in nuclear morphology. These results strongly suggest that the radiosensitivity of MOLT-4 cells correlates well with the unirradiated control levels of TP53 mRNA and TP53 protein, and that the quantitative levels of TP53 protein must reach a threshold for the cells to undergo apoptosis.  相似文献   

11.
Immunomodulatory and cytoprotective role of RP-1 in γ-irradiated mice   总被引:2,自引:0,他引:2  
RP-1 has been reported to provide protection against lethal -irradiation in mice. The present study was undertaken to understand its mechanism of action, especially with respect to modulation of radiation-induced changes in immune cell function, plasma antioxidant potential, cell cycle perturbations, apoptosis in mouse bone marrow cells, and micronuclei frequency in mice reticulocytes. 2 Gy reduced mitogenic response of splenic lymphocytes significantly at 48 h. Pre-irradiation RP-1 treatment significantly countered the radiation-induced loss of splenocyte proliferation. RP-1 treatment, with or without radiation, suppressed macrophage activation as compared to control. Irradiation decreased plasma antioxidant status significantly (p < 0.05) at 1 and 2 h (4.8 ± 0.224 and 4.9 ± 0.057 mM Fe2+) as compared to control (6.29 ± 0.733 mM Fe2+) that was countered by RP-1 pre-treatment significantly (p < 0.05). RP-1 and irradiation individually caused G2 delay in bone marrow cells. RP-1 pre-treatment augmented radiation-induced G2 delay and elicited significant (p < 0.05) recovery in S phase fraction at 48 h in comparison to irradiated group. Radiation-induced apoptosis (3%) was significantly higher than the control. RP-1 pre-treatment further enhanced apoptosis frequency (7.2%) in bone marrow cells. RP-1 pre-treatment significantly (p < 0.05) reduced (1.23%) the radiation-induced MN frequency (2.9%) observed at 48 h post-irradiation interval. Since the radioprotective manifestation of RP-1 is mediated through multiple mechanisms, needs further investigation.  相似文献   

12.
Ionizing radiation can be an effective inducer of apoptosis and studies of many aspects of the pathways and mechanisms involved in this apoptosis induction have been published. This review stresses two aspects: the relationship between apoptosis and loss of clonogenic ability in irradiated cells and the time course for the appearance of apoptosis after radiation exposure. Although it was initially assumed that apoptosis occurred relatively quickly (within hours) after irradiation, evidence is presented and discussed here showing that apoptosis can occur at long times after irradiation (out to 20 days) in some cell types. This late, or delayed, apoptosis occurs after the cells have divided once or several times. The impact of delayed apoptosis on loss of clonogenicity after irradiation remains unclear. It seems likely that in some cell types, e.g., fibroblasts, the occurrence of late apoptosis is minimal and may have little impact on long term cell survival of the population, but in at least one instance, with a cell line of hematopoietic origin, it appears that late apoptosis can account for all the loss of clonogenicity in irradiated cells. The role of p53 in radiation-induced apoptosis is also discussed, with data presented showing that both p53-dependent and independent pathways for radiation-induced apoptosis exist, depending on the cell type.  相似文献   

13.
14.
PURPOSE: to characterize radiation-induced apoptosis in human cells using Fourier transform infrared microspectroscopy (FT-IRM) as a new analytical tool. MATERIAL AND METHODS: Normal human circulating lymphocytes were given a gamma ray dose of 6 Gy, or treated with t-butyl hydroperoxide (t-BuOH). HaCaT keratinocytes were given a dose of 20 Gy. Cells were deposited on ZnS windows for infrared spectral acquisition 2 days and 2 h after irradiation and 2 h after t-BuOH treatment. Apoptosis was simultaneously assessed by flow cytometry analysis of cells displaying annexin-V-positive staining. RESULTS: The flow cytometry study showed that about 90% of sham and irradiated cells were annexin-V negative 2 h after irradiation. Two days after irradiation, 68% of lymphocytes and 76% of HaCaT cells were apoptotic, as well as 43% of lymphocytes treated with t-BuOH. In infrared spectra of these apoptotic cells, qualitative and quantitative changes were observed. In the 960-1245 and 1690-1720 cm-1 ranges, mainly attributed to nucleic acids, changes corresponding to conformational changes in DNA were associated with a decrease in the amount of detectable DNA. Conformational changes were also observed in secondary protein structure, in particular an increase in the amount of beta structures. These DNA and protein changes were associated with an increase in the detectable amount of lipids in apoptotic HaCaT cells only. Two hours after irradiation, depending on the dose and (or) the cell type, qualitative and quantitative changes were observed in the IR spectra in the amide I and amide II bands, mainly attributed to proteins. These changes were associated with a significant decrease in the 1700-1750 cm-1 range, mainly attributed to the -C=O ester groups of DNA and phospholipids, in the irradiated HaCaT cells only. CONCLUSION: Our results are in agreement with biochemical published data on radiation-induced apoptosis, and show that DNA is the first cellular target of radiation-induced apoptosis, which, however, also requires conformational changes and synthesis of cell proteins. They also demonstrate that FT-IRM may be useful for assessing the early radiation damage at the molecular level in human cells.  相似文献   

15.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

16.
Lepidopteran insects/insect cells display 50-100 times higher radioresistance than humans, and are evolutionarily closest to mammals amongst all radioresistant organisms known. Compared to mammalian cells, Lepidopteran cells (TN-368, Sf9) display more efficient antioxidant system and DNA repair and suffer considerably less radiation-induced DNA/cytogenetic damage and apoptosis. Recent studies indicate that a considerably lower radiation-induced oxidative stress may significantly reduce macromolecular damage in Lepidopteran cells. Since nitrosative stress contributes in radiation-induced cellular damage, we investigated its nature in the γ-irradiated Sf9 cells (derived from Spodoptera frugiperda; order Lepidoptera; family Noctuidae) and compared with BMG-1 human cell line having significant NOS expression. Radiation induced considerably less ROS/RNS in Sf9 cells, which remained unchanged on treatment with NOS inhibitor l-NMMA. Surprisingly, growth of Sf9 cultures or irradiation could not induce NO or its metabolites, indicating negligible basal/radiation-induced NOS activity that remained unchanged even after supplementation with arginine. Cytosolic calcium release following high-dose (1000-2000Gy at 61.1cGys(-1)) γ-irradiation or H(2)O(2) (250μM) treatment also failed to generate NO in Sf9 cells having high constitutive levels of calmodulin, whereas BMG-1 cells displayed considerable calcium-dependent NO generation even following 10Gy dose. These results strongly imply the lack of calcium-mediated NOS activity in Sf9 cells. Addition of exogenous NO from GSH-NO caused considerable increase in radiation-induced apoptosis, indicating significant contribution of constitutively attenuated nitrosative stress response into the radioresistance of Lepidopteran cells. Our study demonstrates for the first time that a calcium-insensitive, attenuated nitrosative stress response may contribute significantly in the unusual radioresistance displayed by Lepidopteran insect cells.  相似文献   

17.
The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005)  相似文献   

18.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

19.
The involvement of the p53 gene in apoptosis of many cell types towards -radiation is well established. However, little information is available on the relationship between p53 status and cells ability to undergo apoptosis following exposure to fast neutrons. The aim of this study was to characterize the apoptotic pathway traveled by neutrons in mouse intestinal crypt cells. Each mouse received whole body doses of 0.25–8 Gy fast neutrons and were sacrificed 0, 4, 6, 12, 24, 48, and 72 h, respectively, after irradiation. Apoptosis of crypt cells and expression of p53, cyclin A, cyclin B, cyclin D, and cyclin E were measured. The apoptosis in crypt cells was maximal at 4 and 6 h after irradiation, showing a gradual decline at 24 h. The highest frequency of apoptosis was seen at a 1 Gy dose and then declined gradually beyond a 2 Gy dose with high levels of damage. In immunoblot analysis, apoptosis was confirmed to be dependent on p53 function after fast-neutron irradiation. In addition, cyclin B1, cyclin D, and cyclin E were overexpressed in intestinal cells after fast-neutron irradiation and their immunoreactivities were increased strongly in round and oval cells of laminar propria in villi core and crypts. The results of the current study suggest that apoptosis in crypt cells shows a time- and dose-dependent increase after fast-neutron irradiation. In addition, fast-neutron-induced apoptosis in mouse intestinal crypt cells appears to be related to the increase in functional p53 proteins to a level sufficient to initiate apoptosis and up-regulation of cell-cycle-regulated proteins, which may lead to resistance to DNA damage through cell cycle arrest, is involved deeply in protection of gastrointestinal cells after low doses of fast-neutron irradiation. (Mol Cell Biochem 270: 21–28, 2005)  相似文献   

20.
Immunodeficiency, centromeric region instability, and facial anomalies (ICF), a rare recessive chromosome instability syndrome, involves the loss of DNA methyltransferase 3B activity and the consequent hypomethylation of a small portion of the genome. We demonstrate for the first time that ICF cells are strongly hypersensitive to a genotoxic agent, namely, ionizing radiation. However, unlike cell lines from patients with ataxia telangiectasia or Nijmegen breakage syndrome, chromosome instability syndromes also associated with unusual sensitivity to ionizing radiation, ICF cells did not show any deficiencies in their cell cycle checkpoints. ICF lymphoblastoid cell lines demonstrated increased apoptosis, long-term cell cycle arrest, and loss of viability in clonogenicity assays after irradiation compared to analogous normal cell lines. Also, the ICF cell lines were subject to high frequencies of rapid non-apoptotic cell death upon irradiation but not to abnormally high levels of radiation-induced, cytogenetically detectable chromosome abnormalities. ICF-associated undermethylation of some regulatory gene(s) might lead to an exaggerated response to radiation-induced breaks in DNA yielding increased rates of cell death and irreversible cell cycle arrest. As a defense against their frequent spontaneous breaks in chromosomes 1 and 16, ICF patients may be abnormally prone to chromosome break-induced apoptosis, non-apoptotic cell death, and permanent cell cycle arrest so as to minimize the number of cycling cells with spontaneous rearrangements. A similarly increased cell death and cycle-arrest response to chromosome breaks due to cancer-linked DNA hypomethylation might occur during carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号