首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoregulation of poly(A)-binding protein synthesis in vitro.   总被引:2,自引:0,他引:2       下载免费PDF全文
The poly(A)-binding protein (PABP), in a complex with the 3'poly(A) tail of eukaryotic mRNAs, plays important roles in the control of translation and message stability. All known examples of PABP mRNAs contain an extensive A-rich sequence in their 5' untranslated regions. Studies in mammalian cells undergoing growth stimulation or terminal differentiation indicate that PABP expression is regulated at the translational level. Here we examine the hypothesis that synthesis of the PABP is autogenously controlled. We show that the endogenous inactive PABP mRNA in rabbit reticulocytes can be specifically stimulated by addition of low concentrations of poly(A) and that this stimulation is also observed with in vitro transcribed human PABP mRNA. By deleting the A-rich region from the leader of human PABP mRNA and adding it upstream of the initiator AUG in a reporter mRNA we show that the adenylate tract is sufficient and necessary for mRNA repression and poly(A)-mediated activation in the reticulocyte cell-free system. UV cross-linking experiments demonstrate that the leader adenylate tract binds PABP. Furthermore, addition of recombinant GST-PABP to the cell-free system represses translation of mRNAs containing the A-rich sequence in their 5'UTR, but has no effect on control mRNA. We thus conclude that in vitro PABP binding to the A-rich sequence in the 5' UTR of PABP mRNA represses its own synthesis.  相似文献   

2.
Amaresh C. Panda 《FEBS letters》2010,584(6):1169-1173
Insulin is a secreted peptide that controls glucose homeostasis in mammals, and insulin biosynthesis is regulated by glucose at many levels. Rodent insulin is encoded by two non-allelic genes. We have identified a novel splice variant of the insulin2 gene in mice that constitutes about 75% of total insulin2 mRNA. The alternate splicing does not alter the ORF but reduces the 5′UTR by 12 bases. A reporter gene containing the novel short 5′UTR, is more efficiently expressed in cells, suggesting that alternative splicing of insulin mRNA in mice could result in an additional level of regulation in insulin biosynthesis.  相似文献   

3.
Sidiropoulos KG  Pontrelli L  Adeli K 《Biochemistry》2005,44(37):12572-12581
Insulin has been shown to acutely regulate hepatic apolipoprotein B (apoB) secretion at both translational and post-translational levels; however, mechanisms of apoB mRNA translational control are largely unknown. Recent studies of apoB untranslated regions (UTRs) revealed a potentially important role for cis-trans interactions at the 5' and 3' UTRs. In the present paper, deletion constructs of the UTR regions of apoB revealed that the 5' UTR was necessary and sufficient for insulin to inhibit synthesis of apoB15. Metabolic radiolabeling and in vitro translation experiments in the presence of protease inhibitors confirmed that the effect of insulin on the apoB 5' UTR was translational in nature. Using the nondenaturing electrophoretic mobility shift assay (EMSA), protein-RNA complexes were detected binding to the apoB 5' and 3' UTRs. Denaturing EMSA identified a 110-kDa protein interacting at the 5' UTR. Nondenaturing EMSA determined that insulin altered binding of large protein complexes to the 5' UTR. Binding specificity was determined by competition with both specific and nonspecific competitors. Insulin treatment decreased binding of the 110-kDa protein to the 5' UTR as visualized by EMSA. Absence of insulin increased binding of this trans-acting factor to the 5' UTR by 2-fold. Analysis of the 3' UTR showed no significant insulin-mediated changes in binding of trans-acting factors. We thus propose the existence of a novel RNA-binding insulin-sensitive factor that binds to the 5' UTR and may regulate apoB mRNA translation. Perturbations in hepatic insulin signaling as observed in insulin-resistant states may alter cis-trans interactions at the 5' UTR, leading to alterations in the rate of apoB mRNA translation, thus contributing to apoB-lipoprotein overproduction.  相似文献   

4.
The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRES trans-acting factor polypyrimidine tract binding protein (PTB) to the 5′-UTR of insulin mRNA. For this purpose, human islets were incubated for 2 h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5′-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5′-UTR in vitro, and that this binding corresponded well with rates of cap-independent insulin biosynthesis at the different conditions. In conclusion, our studies show that insulin biosynthesis is mainly cap-dependent at a high glucose concentration, but that the cap-independent biosynthesis of insulin can constitute as much as 40–100% of all insulin biosynthesis during conditions of nitrosative stress. These data suggest that the pancreatic β-cell is able to uphold basal insulin synthesis at conditions of starvation and stress via a cap- and eIF4A-independent mechanism, possibly mediated by the binding of PTB to the 5′-UTR of the human insulin mRNA.  相似文献   

5.
Although expression of the mammalian RNA-binding protein HuD was considered to be restricted to neurons, we report that HuD is present in pancreatic β cells, where its levels are controlled by the insulin receptor pathway. We found that HuD associated with a 22-nucleotide segment of the 5' untranslated region (UTR) of preproinsulin (Ins2) mRNA. Modulating HuD abundance did not alter Ins2 mRNA levels, but HuD overexpression decreased Ins2 mRNA translation and insulin production, and conversely, HuD silencing enhanced Ins2 mRNA translation and insulin production. Following treatment with glucose, HuD rapidly dissociated from Ins2 mRNA and enabled insulin biosynthesis. Importantly, HuD-knockout mice displayed higher insulin levels in pancreatic islets, while HuD-overexpressing mice exhibited lower insulin levels in islets and in plasma. In sum, our results identify HuD as a pivotal regulator of insulin translation in pancreatic β cells.  相似文献   

6.
Glucose induced translation of insulin in pancreatic beta cells is mediated by the 5'UTR of insulin mRNA. We determined the minimal sequence/structure in the 5'UTR of rat insulin gene1 for this regulation. We show that specific factors in the pancreatic islets bind to the 5'UTR of the insulin mRNA upon glucose stimulation. We identified a minimal 29-nucleotide element in the 5'UTR that is sufficient to form the complex, and confer glucose mediated translation activation. Conserved residues in the predicted stem loop region of the un-translated region (UTR) seem to be important for the complex formation and the translation regulation.  相似文献   

7.
Although insulin normally activates global mRNA translation, it has a specific inhibitory effect on translation of apolipoprotein B (apoB) mRNA. This suggests that insulin induces a unique signaling cascade that leads to specific inhibition of apoB mRNA translation despite global translational stimulation. Recent studies have revealed that insulin functions to regulate apoB mRNA translation through a mechanism involving the apoB mRNA 5' untranslated region (5' UTR). Here, we further investigate the role of downstream insulin signaling molecules on apoB mRNA translation, and the mechanism of apoB mRNA translation itself. Transfection studies in HepG2 cells expressing deletion constructs of the apoB 5' UTR showed that the cis-acting region responding to insulin was localized within the first 64 nucleotides. Experiments using chimeric apoB UTR-luciferase constructs transfected into HepG2 cells followed by treatment with wortmannin, a PI-3K inhibitor, and rapamycin, an mTOR inhibitor, showed that signaling via PI-3K and mTOR pathways is necessary for insulin-mediated inhibition of chimeric 5' UTR-luciferase expression. In vitro translation of chimeric cRNA confirmed that the effects observed were translational in nature. Furthermore, using RNA-EMSA we found that wortmannin pretreatment blocked insulin-mediated inhibition of the binding of RNA-binding factor(s), migrating near the 110 kDa marker, to the 5' UTR. Radiolabeling studies in HepG2 cells also showed that insulin-mediated control of the synthesis of endogenously expressed full length apoB100 is mediated via the PI-3K and mTOR pathways. Finally, using dual-cistronic luciferase constructs we demonstrate that apoB 5' UTR may have weak internal ribosomal entry (IRES) translation which is not affected by insulin stimulation, and may function to stimulate basal levels of apoB mRNA translation.  相似文献   

8.
9.
10.
Insulin production in pancreatic beta cells is predominantly regulated through glucose control of proinsulin translation. Previously, this was shown to require sequences within the untranslated regions (UTRs) of the preproinsulin (ppI) mRNA. Here, those sequences were found to be sufficient for specific glucose-regulated proinsulin translation. Furthermore, an element 40-48 bp from the 5' end of the ppI mRNA specifically bound a factor present in islets of Langerhans. Glucose-responsive factor binding to this cis-element exhibited temporal and glucose-concentration-dependent patterns that paralleled proinsulin biosynthesis. Mutating this cis-element abolished the ability of ppI mRNA UTRs to confer glucose regulation upon translation. Like the rat 5'UTR, the human ppI 5'UTR conferred glucose regulation of translation. However alternative splicing of the human 5'UTR that disrupts the cis-element abolished glucose-regulated translation. These data indicate that glucose regulation of cis-element/trans-acting factor interaction is a key component of the mechanism by which glucose regulates insulin production.  相似文献   

11.
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.  相似文献   

12.
The link between hepatic insulin signaling and apolipoprotein B (apoB) production has important implications in understanding the etiology of metabolic dyslipidemia commonly observed in insulin-resistant states. Recent studies have revealed important translational mechanisms of apoB mRNA involving the 5' untranslated region (5'UTR) and insulin-mediated translational suppression via an insulin-sensitive RNA binding protein. Here, we have investigated the role of the protein kinase C (PKCs) signaling cascade in the regulation of apoB mRNA translation, using a series of chimeric apoB UTR-luciferase constructs, in vitro translation of UTR-luciferase cRNAs, and metabolic labeling of intact HepG2 cells. The PKC activator, phorbol 12-myristate 13-acetate (PMA), increased luciferase expression of constructs containing the apoB 5' UTR whereas treatment with Bis-I, a general PKC inhibitor or Go6976, a more specific PKC alpha/beta inhibitor, decreased expression, under both basal and insulin-treated conditions. These effects were confirmed to be translational in nature based on in vitro translation studies of T7 apoB UTR-luciferase constructs transcribed and translated in vitro in the presence of HepG2 cytosol treated with insulin or signaling modulators. Mobility shift experiments using cytosol treated with either PKC inhibitor (Bis-I) or activator (PMA) showed parallel changes between translation of apoB 5'UTR-luciferase constructs and the binding of a protein(s) complex migrating around 110 kDa to the apoB 5' UTR. ApoB mRNA levels were unaltered under these conditions based on real-time PCR analysis. Bis-I and Go6976 were both able to significantly decrease newly synthesized apoB100 protein in the presence or absence of insulin. Overall, the data suggests that PKC activation may induce increased mRNA translation and synthesis of apoB100 protein through a mechanism involving the interaction of trans-acting factors with the apoB 5'UTR. We postulate potential links between PKC activation as seen in insulin-resistant/diabetic states, enhanced translation of apoB mRNA, and hepatic VLDL-apoB overproduction.  相似文献   

13.
YB-1 is a member of the numerous families of proteins with an evolutionary ancient cold-shock domain. It is involved in many DNA- and RNA-dependent events and regulates gene expression at different levels. Previously, we found a regulatory element within the 3' untranslated region (UTR) of YB-1 mRNA that specifically interacted with YB-1 and poly(A)-binding protein (PABP); we also showed that PABP positively affected YB-1 mRNA translation in a poly(A) tail-independent manner (O. V. Skabkina, M. A. Skabkin, N. V. Popova, D. N. Lyabin, L. O. Penalva, and L. P. Ovchinnikov, J. Biol. Chem. 278:18191-18198, 2003). Here, YB-1 is shown to strongly and specifically inhibit its own synthesis at the stage of initiation, with accumulation of its mRNA in the form of free mRNPs. YB-1 and PABP binding sites have been mapped on the YB-1 mRNA regulatory element. These were UCCAG/ACAA for YB-1 and a approximately 50-nucleotide A-rich sequence for PABP that overlapped each other. PABP competes with YB-1 for binding to the YB-1 mRNA regulatory element and restores translational activity of YB-1 mRNA that has been inhibited by YB-1. Thus, YB-1 negatively regulates its own synthesis, presumably by specific interaction with the 3'UTR regulatory element, whereas PABP restores translational activity of YB-1 mRNA by displacing YB-1 from this element.  相似文献   

14.
Noroviruses are human enteric caliciviruses for which no cell culture is available. Consequently, the mechanisms and factors involved in their replication have been difficult to study. In an attempt to analyze the cis- and trans-acting factors that could have a role in NV replication, the 3(')-untranslated region of the genome was studied. Use of Zuker's mfold-2 software predicted that NV 3(')UTR contains a stem-loop structure of 47 nts. Proteins from HeLa cell extracts, such as La and PTB, form stable complexes with this region. The addition of a poly(A) tail (24 nts) to the 3(')UTR permits the specific binding of the poly(A) binding protein (PABP) present in HeLa cell extracts, as well as the recombinant PABP. Since La, PTB, and PABP are important trans-acting factors required for viral translation and replication, these RNA-protein interactions may play a role in NV replication or translation.  相似文献   

15.
16.
17.
18.
In this study, proteins specifically interacting with the 3′ untranslated region (UTR) of mRNA of the multifunctional Y-box-binding protein 1 (YB-1) were identified. One of these, hnRNP Q, was shown to specifically interact with the regulatory element (RE) in YB-1 mRNA 3′ UTR and to inhibit translation of this mRNA. Its binding to the RE was accompanied by displacement from this element of the poly(A)-binding protein (PABP), a positive regulator of YB-1 mRNA translation, and by enhanced binding of the negative YB-1 mRNA translation regulator — YB-1 itself.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号