首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The production of heterologous proteins is a research field of high interest, with both academic and commercial applications. Yeasts offer a number of advantages as host systems, and, among them, Yarrowia lipolytica appears as one of the most attractive. This non-conventional dimorphic yeast exhibits a remarkable regularity of performance in the efficient secretion of various heterologous proteins. This review presents the main characteristics of Y. lipolytica, and the genetic and molecular tools available in this yeast. A particular emphasis is given to newly developed tools such as efficient promoters, a non-homologous integration method, and an amplification system using defective selection markers. A table recapitulates the 42 heterologous proteins produced until now in Y. lipolytica. A few relevant examples are exposed in more detail, in order to illustrate some peculiar points of the Y. lipolytica physiology, and to offer a comparison with other production systems. This amount of data demonstrates the global reliability and versatility of Y. lipolytica as a host for heterologous production.  相似文献   

2.
3.
近30年来解脂耶氏酵母、克鲁维酵母、毕赤酵母、假丝酵母、汉逊酵母等非传统酵母因其具有天然的生理代谢优势,如快速生长、多底物利用、胁迫耐受性等,在代谢工程领域得到了广泛关注,多种基因工程改造工具正逐渐被开发用于非传统酵母的特性拓展,使其成为合成重组蛋白、生物可再生化学物质的高效细胞工厂。文中总结了非传统酵母中基因编辑工具的发展,并从代谢工程改造策略角度概括了利用非传统酵母进行产品合成的研究进展。最后,讨论了非传统酵母在产品生产应用方面遇到的挑战和未来的研究方向。  相似文献   

4.
Recombinant protein production in yeasts   总被引:8,自引:0,他引:8  
Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. These technologies, now approx 25 yr old, have become one of the most important technologies developed in the twentieth century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances in rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize advantages and limitations of the main and most promising yeast hosts.  相似文献   

5.
The study describes the identification of sphingolipid biosynthesis genes in the non-conventional yeast Pichia ciferrii, the development of tools for its genetic modification as well as their application for metabolic engineering of P. ciferrii with the goal to generate strains capable of producing the rare sphingoid bases sphinganine and sphingosine. Several canonical genes encoding ceramide synthase (encoded by PcLAG1 and PcLAF1), alkaline ceramidase (PcYXC1) and sphingolipid C-4-hydroxylase(PcSYR2), as well as structural genes for dihydroceramide Δ(4)-desaturase (PcDES1) and sphingolipid Δ(8)-desaturase (PcSLD1) were identified, indicating that P. ciferrii would be capable of synthesizing desaturated sphingoid bases, a property not ubiquitously found in yeasts. In order to convert the phytosphingosine-producing P. ciferrii wildtype into a strain capable of producing predominantly sphinganine, Syringomycin E-resistant mutants were isolated. A stable mutant almost exclusively producing high levels of acetylated sphinganine was obtained and used as the base strain for further metabolic engineering. A metabolic pathway required for the three-step conversion of sphinganine to sphingosine was implemented in the sphinganine producing P. ciferrii strain and subsequently enhanced by screening for the appropriate heterologous enzymes, improvement of gene expression and codon optimization. These combined efforts led to a strain capable of producing 240mgL(-1) triacetyl sphingosine in shake flask, with tri- and diacetyl sphinganine being the main by-products. Lab-scale fermentation of this strain resulted in production of up to 890mgkg(-1) triacetyl sphingosine. A third by-product was unequivocally identified as triacetyl sphingadienine. It could be shown that inactivation of the SLD1 gene in P. ciferrii efficiently suppresses triacetyl sphingadienine formation. Further improvement of the described P. ciferrii strains will enable a biotechnological route to produce sphinganine and sphingosine for cosmetic and pharmaceutical applications.  相似文献   

6.
解脂耶氏酵母是一种重要的产油酵母,由于其能利用多种疏水性底物,具有良好的耐酸、耐盐等胁迫耐受性,具有高通量的三羧酸循环,可提供充足的乙酰辅酶A前体等特点,被认为是生产萜类、聚酮类和黄酮类等天然产物的理想宿主,在代谢工程领域有着广泛的应用。近年来,越来越多的基因编辑、表达和调控工具被逐渐开发,这促进了解脂耶氏酵母合成各种天然产物的研究。文中综述了近年来解脂耶氏酵母中基因表达和天然产物合成方面的研究进展,并探讨了在该酵母中异源合成天然产物所面临的挑战和可能的解决方案。  相似文献   

7.
《Biotechnology advances》2017,35(6):681-710
The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris.  相似文献   

8.
The yeast Kluyveromyces marxianus presents several interesting features that make this species a promising industrial yeast for the production of several compounds. In order to take full advantage of this yeast and its particular properties, proper tools for gene disruption and metabolic engineering are needed. The Cre-loxP system is a very versatile tool that allows for gene marker rescue, resulting in mutant strains free of exogenous selective markers, which is a very important aspect for industrial application. As the Cre-loxP system works in some non-conventional yeasts, namely Kluyveromyces lactis, we wished to know whether it also works in K. marxianus. Here, we report the validation of this system in K. marxianus CBS 6556, by disrupting two copies of the LAC4 gene, which encodes a beta-galactosidase activity.  相似文献   

9.
酿酒酵母Saccharomyces cerevisiae细胞表面展示表达系统是一种固定化表达异源蛋白质的真核展示系统,具有糖基化作用及蛋白翻译后折叠等优势,更利于基因工程操作。近年来,酵母细胞表面工程作为一种新兴策略来固定化淀粉水解酶、纤维素水解酶以及木聚糖降解酶,从而应用于燃料乙醇的生产。文中着重介绍了酵母细胞表面展示系统的基本原理、研究现状以及在生物乙醇生产中的应用前景及所面临的挑战。  相似文献   

10.
The non-conventional yeast Yarrowia lipolytica produces an extracellular lipase encoded by the LIP2 gene. Mutant strains with enhanced productivity were previously obtained either by chemical mutagenesis or genetic engineering. In this work, we used one of these mutants, named LgX64.81 to select new overproducing strains following by amplification of the LIP2 gene. We also developed a process for lipase production in bioreactors and compared lipase production levels in batch and fed-batch cultures. Batch culture led to a lipase production of 26450 U ml(-1) in a media containing olive oil and tryptone as carbon and nitrogen sources. Feeding of a combination of tryptone and olive oil at the end of the exponential growth phase yielded to lipase activity of 158246 U ml(-1) after 80 h of cultivation. In addition this production system developed for the extracellular lipase could also be applied for other heterologous protein production since we have demonstrated that LgX64.81 is an interesting alternative host strain.  相似文献   

11.
A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging ‘omics’-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia.  相似文献   

12.
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.  相似文献   

13.
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ?C31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line.  相似文献   

14.
15.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

16.
非常规酵母的分子遗传学及合成生物学研究进展   总被引:1,自引:0,他引:1  
先进的合成生物学技术与传统的分子遗传学技术的结合更有助于实现酵母底盘细胞的快速改造和优化。酵母合成生物学研究最早开始于常规酵母——酿酒酵母(Saccharomyces cerevisiae),近些年来又迅速扩展至一些非常规酵母,包括巴斯德毕赤酵母(Pichiapastoris)、解脂耶氏酵母(Yarrowialipolytica)、乳酸克鲁维酵母(Kluyveromyces lactis)和多形汉逊酵母(Hansenula polymorpha)等。借助合成生物学技术与工具,目前科学家们已经成功开发出了能够高效生产生物材料、生物燃料、生物基化学品、蛋白质制剂、食品添加剂和药物等工业产品的重组非常规酵母工程菌株。本文系统总结了合成生物学工具(主要是基因组编辑工具)、合成生物学组件(主要是启动子和终止子)和相关分子遗传学方法在上述非常规酵母系统(底盘细胞)中的最新研究进展和应用情况,并讨论了其他合成生物学技术在这些非常规酵母表达系统中的潜在适用性和应用前景。这为研究人员利用合成生物学方法在这一新型非模式微生物底盘细胞中设计和构建各种高附加值工业产品的异源合成模块并最终实现目标化合物的高效生物合成提供了科学的理论指导。  相似文献   

17.
Yarrowia lipolytica is a dimorphic oleaginous non-conventional yeast widely used as a powerful host for expressing heterologous proteins, as well as a promising source of engineered cell factories for various applications. This microorganism has a documented use in Feed and Food and a GRAS (generally recognized as safe) status. Moreover, in vivo studies demonstrated a beneficial effect of this yeast on animal health. However, despite the focus on Y. lipolytica for the industrial manufacturing of heterologous proteins and for probiotic effects, its potential for oral delivery of recombinant therapeutic proteins has seldom been evaluated in mammals. As the first steps towards this aim, we engineered two Y. lipolytica strains, a dairy strain and a laboratory strain, to produce the model fluorescent protein mCherry. We demonstrated that both Y. lipolytica strains transiently persisted for at least 1 week after four daily oral administrations and they maintained the active expression of mCherry in the mouse intestine. We used confocal microscopy to image individual Y. lipolytica cells of freshly collected intestinal tissues. They were found essentially in the lumen and they were rarely in contact with epithelial cells while transiting through the ileum, caecum and colon of mice. Taken as a whole, our results have shown that fluorescent Y. lipolytica strains constitute novel tools to study the persistence and dynamics of orally administered yeasts which could be used in the future as oral delivery vectors for the secretion of active therapeutic proteins in the gut.  相似文献   

18.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

19.
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.  相似文献   

20.
The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号