首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced Glycation End-products (AGE-s) were shown to exhibit a number of potentially harmful properties in contact with cells and tissues. As their concentrations increases with age, faster even in hyperglycemic individuals, they are considered important for aging- and age-associated pathologies, especially for athero-arteriosclerosis and type II diabetes. We describe here the methods used for the demonstration of a direct cytotoxicity of several AGE-products when added to human skin fibroblast cultures. This cytotoxicity was still demonstrable when cells, previously cultured with AGE-s, were transferred to new medium without AGE-s. This effect, the remanence of cytotoxicity in absence of AGE-s, suggests a certain degree of inheritance, possibly by epigenetic mechanisms, of the cytotoxic effect of AGE-s, mediated by the AGE-receptors (RAGE-s) and inhibited by free radical-scavengers, such as L-Carnosine, Catalase and Rhamnose-rich oligo- and polysaccharides. Such cytotoxicity can occur not only on the skin but also in other tissues. It appears thus that besides the crosslinking of collagen and other macromolecules, the products of the Maillard reaction can exert their harmful cytotoxic effects directly on the cells.  相似文献   

2.
Acetylcholine (ACh) has been reported to play various physiological roles, including wound healing in the cornea. Here, we study the role of ACh in the transition of corneal fibroblasts into myofibroblasts, and in consequence its role in the onset of fibrosis, in an in vitro human corneal fibrosis model. Primary human keratocytes were obtained from healthy corneas. Vitamin C (VitC) and transforming growth factor‐β1 (TGF‐β1) were used to induce fibrosis in corneal fibroblasts. qRT‐PCR and ELISA analyses showed that gene expression and production of collagen I, collagen III, collagen V, lumican, fibronectin (FN) and alpha‐smooth muscle actin (α‐SMA) were reduced by ACh in quiescent keratocytes. ACh treatment furthermore decreased gene expression and production of collagen I, collagen III, collagen V, lumican, FN and α‐SMA during the transition of corneal fibroblasts into myofibroblasts, after induction of fibrotic process. ACh inhibited corneal fibroblasts from developing contractile activity during the process of fibrosis, as assessed with collagen gel contraction assay. Moreover, the effect of ACh was dependent on activation of muscarinic ACh receptors. These results show that ACh has an anti‐fibrotic effect in an in vitro human corneal fibrosis model, as it negatively affects the transition of corneal fibroblasts into myofibroblasts. Therefore, ACh might play a role in the onset of fibrosis in the corneal stroma.  相似文献   

3.
This study was to investigate the stability, physico-mechanical property and biocompatibility of porcine corneal acellularized matrix (PCAM) that was prepared using human sera treatment to decellularize corneas. The stability (the rate of biodegradation) and physico-mechanical property (water uptake, density, and porosity) of PCAM were not compromised, compared with porcine fresh cornea matrix (PFCM, p > 0.05). The contact and extract cytotoxicity tests with human corneal epithelial cells and human keratocytes showed that PCAM has a good biocompatibility ex vivo and no cytotoxic effect. These results present the ability to create safety scaffolds that function as cornea grafts and provide a novel experimental approach for the study of cornea tissue engineering using acellular porcine cornea.  相似文献   

4.
Effect of hyaluronan on MMP expression and activation   总被引:1,自引:0,他引:1  
  相似文献   

5.
Herpetic stromal keratitis (HSK) is an inflammatory disorder induced by HSV-1 infection and characterized by T cell-dependent destruction of corneal tissues. It is not known what triggers CD4(+) T cell migration into the stroma of HSV-1-infected corneas. The keratocyte is a fibroblast-like cell that can function as an antigen-presenting cell in the mouse cornea by expressing MHC class II and costimulatory molecules after HSV-1 infection. We hypothesized that chemokines produced by stromal keratocytes are involved in CD4(+) T cell infiltration into the cornea. We found that keratocytes produce several cytokines and chemokines, including MCP-1, RANTES, and T cell activation (TCA)-3. HSV-1 infection increased the production of MCP-1 and RANTES by keratocytes, and these acted as chemoattractants for HSV-1-primed CD4(+) T cells expressing CCR2 and CCR5. Expression of MCP-1 in the corneal stroma was confirmed in vivo. Finally, when HSV-1-primed CD4(+) T cells were adoptively transferred into wild type and MCP-1-deficient mice that had been sublethally irradiated to minimize chemokine production from immune cells, infiltration of CD4(+) T cells was markedly reduced in the MCP-1-deficient mice, suggesting that it is the MCP-1 from HSV-1-infected keratocytes that attracts CD4(+) T cells into the cornea.  相似文献   

6.
The cornea contains, as a major element, a transparent stroma produced and maintained by keratocytes (fibroblasts). Through molecular biology studies using cultured human corneal fibroblasts, a cDNA that was shown to be novel was isolated and sequenced. This novel gene product, named SH3-domain binding protein 4 (SH3BP4), contains a 5.6-kb message that is present in normal human corneal fibroblasts and all tissues examined, with higher levels in pancreas, placenta, heart, and kidney. SH3BP4 was localized by FISH analysis to human chromosome 2q37.1-q37.2 near the telomere. The deduced sequence for SH3BP4 was found to contain a 963-amino-acid open reading frame that has homology to a 479-amino-acid protein in GenBank called EH-binding protein. Although the entire sequence of EH-binding protein aligns with SH3BP4, the alignment is not complete or contiguous. Therefore, SH3BP4 has an additional 73 amino acids at the N-terminus and an additional 411 amino acids near the C-terminus that are not present in EH-binding protein. Consensus sequence domains identified in SH3BP4 include a SH3 domain, three N-P-F motifs, a P-X-X-P motif noted for binding to SH3 domains, a bipartite nuclear targeting signal, and a tyrosine phosphorylation site. SH3BP4 homologies and consensus sequence sites indicate that it may be involved in a newly identified cascade of proteins involved in endocytosis, intracellular sorting, and the cell cycle.  相似文献   

7.
8.
9.
The growth kinetics and population doubling limits of chick embryonic fibroblasts, chondroblasts, and retinal pigment cells were compared. Chondroblasts were found to have a cumulative population doubling level (37 +/- 3 PDL) similar (p = 0.05) to that of control fibroblasts (42 +/- 2 PDL), in individual and pooled clones. While both cell types have similar doubling potential, the proportion of tritium-labeled nuclei decreases, and differs significantly as doubling level increases. This age-associated decline is due to an extension in the population doubling time. Direct cell-cycle analysis shows this increase to occur in the G1 phase. Furthermore, cartilage colonies maintain their phenotypic expression (metachromasia) throughout their lifespan under conditions of subcloning at sparse density. When fibroblasts derived from 15 day chick embryos are compared with fibroblasts from 10 day embryos (41 +/- 2 PDL) there is no significant difference (p = 0.05) in cumulative PDL or percent labeled nuclei, indicating that fibroblasts of different embryonic age have similar potential. The addition of hydrocortisone and insulin to the medium significantly shortens (25 +/- 2 PDL) the lifespan of 10 day chick fibroblasts. Kinetics of retinal pigment cells show a population doubling potential (29 +/- 1 PDL) different from fibroblasts and chondroblasts, suggesting that different cell types may not have similar limits on doubling potential when first determined in embryogenesis. Hydrocortisone and insulin have no effect on the growth kinetics or lifespan of retinal pigment cells in culture.  相似文献   

10.
Apoptosis in the aging process   总被引:2,自引:0,他引:2  
Although many hypotheses have been proposed to explain the aging process, the exact mechanisms are not well defined. Recent accumulating evidence indicates that dysregulation of the apoptotic process may be involved in some aging processes; however, it is still debatable how exactly apoptosis is expressed during aging in vivo. In this review, we discuss recent findings related to apoptosis of individual organs during aging and their significance. We demonstrate that aging enhances apoptosis and susceptibility to apoptosis in several types of intact cells. In contrast, in certain genetically damaged, initiated, and preneoplastic cells, aging suppresses these age-associated apoptotic changes. In various cells, apoptosis enhances the elimination of damaged and dysfunctional cells presumably caused by oxidative stress, glycation, and DNA damage. In these cases, the incidence of apoptosis correlates with the level of accumulated injury. It is concluded that apoptosis plays an important role in the aging process and tumorigenesis in vivo probably as an inherent protective mechanism against age-associated tumorigenesis.  相似文献   

11.
Bone marrow-derived cells (BMCs) reside in the anterior stroma of the central and paracentral cornea, as well as all stromal layers of the peripheral cornea, in normal human eyes. We investigated the factors regulating the constitutive distribution of BMCs in normal human corneal stroma. Cultured human corneal keratocytes expressed several chemokines (growth-related oncogene/CXCL1-3, IL-8/CXCL8, and MCP-1/CCL2) in the Ab array study. CCR2 and CCR7 mRNAs were detected in BMCs by multiplex RT-PCR. Keratocytes/corneal epithelial cells and BMCs selected from normal human donor corneas by using magnetic beads expressed MCP-1/CCL2 and CCR2 protein, respectively. BMCs isolated from human corneal stroma showed a chemotactic response to MCP-1/CCL2 in the Boyden chamber assay. The chemotactic effect of keratocyte supernatant was inhibited by blockade of MCP-1/CCL2. This is the first work on constitutive expression of CCR2 by BMCs from the corneal stroma and MCP-1/CCL2 by keratocytes/epithelial cells. Our findings suggest that the interaction between MCP-1/CCL2 and CCR2 determines the distribution of constitutive BMCs in normal human corneal stroma.  相似文献   

12.
PCR analysis and Western blotting revealed the expression of the mineralocorticoid receptor (MCR) and the epithelial sodium channel (ENaC) genes at the level of RNA, DNA, and protein in several leukemic cell lines, fibroblasts from human cornea, and epithelial cells from ocular tissues. Following immunofluorescence, the MCR appeared to be primarily nuclear whereas the ENaC was almost exclusively membrane-bound. Paradoxically, the MCR-specific antagonist ZK 91587 actually stimulated the multiplication of human erythroblastic leukemia cells, contrary to the inhibitory effect of the antagonist RU 26752 on the multiplication of corneal fibroblasts; both effects were opposed by aldosterone. In quantitative PCR, both basal and aldosterone-induced levels of ENaC were diminished by ZK 91587 in the corneal fibroblast, in contrast to the stimulation observed in the retinal pigmentary epithelium. Thus, contrary to the existing notions, (a) antimineralocorticoids can act both as agonists and antagonists, and (b) the receptor-mediated action of mineralocorticoids on the sodium channel is not restricted to the epithelial cell.  相似文献   

13.
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.  相似文献   

14.

Purpose

We sought to identify the anti-angiogenic molecule expressed in corneal keratocytes that is responsible for maintaining the avascularity of the cornea.

Methods

Human umbilical vein endothelial cells (HUVECs) were cultured with either human dermal fibroblasts or with human corneal keratocytes under serum-free conditions. The areas that exhibited blood vessel formation were estimated by immunostaining the cultures with an antitibody against CD31, a blood vessel marker. We also performed microarray gene-expression analysis and selected one molecule, angiopoietin-like 7 (ANGPTL7) for further functional studies conducted with the keratocytes and in vivo in mice.

Results

Areas showing blood vessel formation in normal serum-free medium were conditions were markedly smaller when HUVECs were co-cultured with corneal keratocytes than when they were co-cultured with the dermal fibroblasts under the same conditions. Microarray analysis revealed that ANGPTL7 expression was higher in keratocytes than in dermal fibroblasts. In vitro, inhibiting ANGPTL7 expression by using a specific siRNA led to greater tube formation than did the transfection of cells with a control siRNA, and this increase in tube formation was abolished when recombinant ANGPTL7 protein was added to the cultures. In vivo, intrastromal injections of an ANGPTL7 PshRNA into the avascular corneal stroma of mice resulted in the growth of blood vessels.

Conclusions

ANGPTL7, which is abundantly expressed in keratocytes, plays a major role in maintaining corneal avascularity and transparency.  相似文献   

15.
《Free radical research》2013,47(8):81-92
Abstract

The review deals with impairment of Ca2+-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca2+-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca2+-ATPase structure and function contributing to Ca2+ imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca2+-pump glycation, and their advantages and disadvantages are discussed.  相似文献   

16.
The transparent corneal stroma contains a population of corneal fibroblasts termed keratocytes, which are interspersed between the collagen lamellae. Under normal conditions, the keratocytes are quiescent and transparent. However, after corneal injury the keratocytes become activated and transform into backscattering wound-healing fibroblasts resulting in corneal opacification. At present, the most popular hypothesis suggests that particular abundant water-soluble proteins called enzyme-crystallins are involved in maintaining corneal cellular transparency. Specifically, corneal haze development is thought to be related to low levels of cytoplasmic enzyme-crystallins in reflective corneal fibroblasts. To further investigate this hypothesis, we have used a proteomic approach to identify the most abundant water-soluble proteins in serum-cultured human corneal fibroblasts that represent an in vitro model of the reflective wound-healing keratocyte phenotype. Densitometry of one-dimensional gels revealed that no single protein isoform exceeded 5% of the total water-soluble protein fraction, which is the qualifying property of a corneal enzyme-crystallin according to the current definition. This result indicates that wound-healing corneal fibroblasts do not contain enzyme-crystallins. A total of 254 protein identifications from two-dimensional gels were performed representing 118 distinct proteins. Proteins protecting against oxidative stress and protein misfolding were prominent, suggesting that these processes may participate in the generation of cytoplasmic light-scattering from corneal fibroblasts.  相似文献   

17.
Choong PF  Mok PL  Cheong SK  Then KY 《Cytotherapy》2007,9(3):252-258
BACKGROUND: The unique potential of mesenchymal stromal cells (MSC) has generated much research interest recently, particularly in exploring the regenerative nature of these cells. Previously, MSC were thought to be found only in the BM. However, further studies have shown that MSC can also be isolated from umbilical cord blood, adipose tissue and amniotic fluid. In this study, we explored the possibility of MSC residing in the cornea. METHODS: Human cornea tissues were chopped to fine pieces and cultured in DMEM supplemented with 10% FBS. After a few days, the crude pieces of cornea were removed. Isolated keratocytes that were adherent to tissue culture flasks were grown until confluency before being passaged further. The immunophenotype was evaluated by flow cytometry. Assays were performed to differentiate cultured cells into adipocytes and osteocytes. RESULTS: Isolated corneal keratocytes exhibited a fibroblastoid morphology and expressed CD13, CD29, CD44, CD56, CD73, CD90, CD105 and CD133, but were negative for HLA-DR, CD34, CD117 and CD45. These properties are similar to those of BM-MSC (BM-MSC). In addition, corneal keratocytes were able to differentiate into adipocytes and osteocytes. DISCUSSION: Our results indicate that corneal keratocytes have MSC-like properties similar to those of BM-MSC. This study opens up the possibility of using BM-MSC in corneal tissue engineering and regeneration. Furthermore, discarded corneal tissue can also be used to generate MSC for tissue engineering purposes.  相似文献   

18.
19.
Although amorphous silica nanoparticles (aSiO(2)NPs) are believed to be non-toxic and are currently used in several industrial and biomedical applications including cosmetics, food additives and drug delivery systems, there is still no conclusive information on their cytotoxic, genotoxic and carcinogenic potential. For this reason, this work has investigated the effects of aSiO(2)NPs on Balb/3T3 mouse fibroblasts, focusing on cytotoxicity, cell transformation and genotoxicity. Results obtained using aSiO(2)NPs, with diameters between 15 nm and 300 nm and exposure times up to 72 h, have not shown any cytotoxic effect on Balb/3T3 cells as measured by the MTT test and the Colony Forming Efficiency (CFE) assay. Furthermore, aSiO(2)NPs have induced no morphological transformation in Balb/3T3 cells and have not resulted in genotoxicity, as shown by Cell Transformation Assay (CTA) and Micronucleus (MN) assay, respectively. To understand whether the absence of any toxic effect could result from a lack of internalization of the aSiO(2)NPs by Balb/3T3 cells, we have investigated the uptake and the intracellular distribution following exposure to 85 nm fluorescently-labelled aSiO(2)NPs. Using fluorescence microscopy, it was observed that fluorescent aSiO(2)NPs are internalized and located exclusively in the cytoplasmic region. In conclusion, we have demonstrated that although aSiO(2)NPs are internalized in vitro by Balb/3T3 mouse fibroblasts, they do not trigger any cytotoxic or genotoxic effect and do not induce morphological transformation, suggesting that they might be a useful component in industrial applications.  相似文献   

20.
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号