首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of various energetic nutrients on metabolism of l-[U-14C]leucine and [1–14C]glycine in cerebral cortex of rats at different ages. At gestational age, glucose and lactate stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine and from l-[U-14C]leucine, respectively; glucose, -OH-butyrate and lactate stimulated lipid synthesis from l-[U-14C]leucine. At 10 days of age, glucose, mannose, and fructose stimulated protein synthesis, and glucose and mannose stimulated oxidation to CO2 as well as lipid synthesis from l-[U-14C]leucine. In adult rats, glucose, mannose, and fructose stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine; glutamine also markedly decreased the oxidation of l-[U-14C]leucine and [1–14C]glycine in 10–day-old and adult rats.  相似文献   

2.
Sciatic nerves of 25-week-old genetically diabetic (C57BL/Ks 〈db/db〉) mice and their litter-mate controls were removed, and their metabolic incorporation of [3H]fucose and [14C]leucine into myelin was studied in vitro. Untreated diabetic animals showed significant increases (p<0.05) in the fucose/leucine incorporation into myelin when compared to values found for their litter-mates. These results correlated well with previous experiments performed on alloxan or streptozotocindiabetic rats and thus show the in vitro incubation procedure to be a good indicator of altered metabolic conditions in peripheral nerves due to diabetes mellitus. The resulting ratio increases seen in diabetic animals is at variance with the decrease in ratios found in animals undergoing typical Wallerian degeneration. These results suggest that different metabolic processes operate in untreated diabetics than in normals or in those undergoing other degenerative nerve processes.  相似文献   

3.
Abstract— Diphtheria toxin (DT) did not produce measurable degradation of myelin proteins or sulphatide in sciatic nerves of chick embryos after incubation in vitro for 4 h. In contrast, DT inhibited the in vitro incorporation of L-[U-14C]leucine into myelin proteins by the nerves after a delay of 1 h. Separation of the myelin proteins by SDS-polyacrylamide gel electrophoresis indicated that the synthesis of Wolfgram proteins and proteins not entering the gel was inhibited by 21–22 per cent, whereas synthesis of myelin proteolipid and basic proteins was inhibited by 79–88 per cent. Incorporation of 35SO4 into myelin [35S]sulphatide was also inhibited by DT after a delay of 2 h. The inhibition of [35S]sulpha-tide incorporation into myelin caused by DT differed from that observed with puromycin in that it did not depend on depletion of an intracellular transport lipoprotein. Instead, the inhibition seemed to be secondary to the decreased synthesis of myelin proteolipid and basic proteins.  相似文献   

4.
EVIDENCE THAT THE MAJOR PROTEIN IN RAT SCIATIC NERVE MYELIN IS A GLYCOPROTEIN   总被引:24,自引:12,他引:12  
Evidence is presented that the major protein of rat sciatic nerve myelin is a glycoprotein. When myelin proteins were separated by polyacrylamide gel electrophoresis, the major band which was stained with amido black–Coomassie blue was also stained with periodic acid-Schiff reagents for carbohydrate. Radioactive labelling of myelin in vivo with [3H]leucine and [14C]fucose, followed by electrophoresis of the proteins, indicated that with both isotopes the major labelled peak corresponded to the major stained band. In addition, a second smaller peak of [14C]fucose migrated ahead of the major peak. Delipidated myelin contained galactose, mannose, fucose and sialic acid.  相似文献   

5.
—The metabolic activity of proteins from myelin and non-myelin fractions of slices of lesions in monkey brains and in spinal cords of Lewis rats with acute experimental allergic encephalomyelitis was investigated using [1-14C]leucine as a protein precursor. The uptake in vitro of [1-14C]leucine into the monkey EAE lesions was greatly increased in both the myelin and non-myelin fractions. Similar findings were made in spinal cord slices of the EAE rat with an average specific activity 341 per cent of control measured in proteins of purified myelin and 415 per cent of control in the non-myelin protein. The increased uptake appeared with the onset of paralytic symptoms 10–14 days after injection. The increased uptake did not appear to be a result of an increased amino acid pool size as measured with uniformly labelled l -leucine, valine, arginine and phenylalanine. The increase in specific activity of the myelin protein of the EAE rats was shown to be associated with the peaks characteristic of myelin protein when separated on polyacrylamide gels and the serial slices counted. Most of the radioactivity of both the control and EAE myelin protein migrated with the high molecular weight fraction, and the largest increase in radioactivity in myelin protein appeared in this fraction. Some increase in specific activity was also found in the basic and proteolipid proteins. Four different guinea-pig antigens were used to induce EAE: whole spinal cord, purified basic protein, purified myelin and basic protein + cerebroside. All caused paralytic symptoms and greatly increased incorporation in vitro of [1-14C]leucine into spinal cord proteins. The incorporation of [1-14C]leucine into slices of the inguinal and popliteal lymph nodes of the EAE and Freund's adjuvant control rats were measured and compared with the incorporation into the spinal cord non-myelin fractions. The specific activity of lymph node proteins was of the order of 10 × that of the non-myelin protein of the control spinal cord. Invasion of a moderate number of cells of the order of activity of these lymph nodes could account for the large increase in rate of protein synthesis in the EAE nervous tissue. It is concluded that much of the increased protein synthesis could be due to the inflammatory cells, although a small amount of the total increase appears to be associated with myelin protein. Other changes in metabolism of the CNS tissue of the EAE rat include a lower rate of lipid synthesis and a decreased activity of the tricarboxylic acid cycle.  相似文献   

6.
Biosynthesis of myelin proteins in vitro   总被引:3,自引:3,他引:0  
Abstract— The rates of uptake of DL-[1-14C]leucine into the three classes of protein in myelin isolated from slices of rat brain and spinal cord were determined. Basic protein exhibited the slowest rate of uptake; chloroform-methanol-soluble proteolipid protein exhibited intermediate rates and the insoluble protein had the most active uptake. All myelin proteins were less active than the mixture of proteins derived from the non-myelin fraction. Cyclohexi-mide (10?3 M) and choramphenicol (5 × 10?3 M) inhibited the incorporation of [1-14C]leucine into brain proteins by as much as 95 per cent. γ-Aminobutyric acid had no effect on the system. Chloramphenicol also inhibited the uptake of [1-14C]acetate into myelin lipids, but cycloheximide did not affect lipid synthesis. These effects were observed on both 35-day-oldand 18-month-old rats, but the biosynthetic activity was far less in myelin from the older rats. The results are discussed in relation to the structure of myelin. It is suggested that the data best fit models in which lipid and protein are in separate phases in the membrane.  相似文献   

7.
1. Rat thyroid lobes were incubated for various periods of time in Krebs–Ringer bicarbonate containing [3H]leucine and either [1-14C]galactose or [1-14C]mannose. Radioactivity in soluble proteins was determined after their separation by sucrose-gradient centrifugation. 2. The time-course of incorporation of label from [14C]-mannose into soluble thyroid proteins was parallel to that observed for [3H]leucine. There was a lag of at least 30min. before either label appeared in non-iodinated thyroglobulin (protein 17–18s). During this time both labels were detected in two fractions known to contain subunit precursors of thyroglobulin (fractions 12s and 3–8s). Radioactivity from double-labelled fractions 12s and 3–8s was transferred to protein 17–18s during subsequent incubation in an unlabelled medium. 3. In contrast, most of the [14C]galactose was immediately incorporated into protein 17–18s. 4. During the first hour of incubation, puromycin almost completely inhibited the incorporation of label from [3H]leucine and [14C]mannose into all protein fractions, but had little effect on the incorporation of [14C]galactose into protein 17–18s. 5. These results indicate that mannose is incorporated into the carbohydrate groups of protein 17–18s at an earlier stage in its formation than galactose. It is suggested that the synthesis of the carbohydrate groups of ghyroglobulin begins soon after formation of the polypeptide components, more than 30min. before these are aggregated to protein 17–18s; carbohydrate synthesis then proceeds in a stepwise manner, galactose being incorporated at about the time of aggregation of subunits to protein 17–18s. Most, if not all, the carbohydrate is added to thyroglobulin before it is iodinated.  相似文献   

8.
Retinas of chick embryos contain insulin (1) and further, are capable of synthesizing it, as demonstrated by incubating retinas at different ages (7th–18th day) with [3H]leucine. The synthesized radioactive insulin was isolated and assayed by means of a HPLC procedure. The synthesis of insulin was found to be highest in the youngest retinas studied (day 7), afterwards it declined with age except for an increment found at 14–15 day. Explants of chick embryo retinas, cultured in vitro, rapidly degraded insulin. Nevertheless, the content of immunoreactive insulin in retinal explants diminished slowly with the age of culture, so that, after 8 days of incubation, it was about 60% of the content found in the retinas at the beginning of incubation. This was proof that cultured explants are capable of efficiently synthesizing insulin. The synthesized [3H]insulin was released from explants into the medium. This was evident also after 6–8 days in culture.  相似文献   

9.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

10.
Incorporation of [3H]leucine and [3H]valine into proteins of freshwater bacteria was studied in two eutrophic lakes. Incorporation of both amino acids had a saturation level of about 50 nM external concentration. Only a fraction of the two amino acids taken up was used in protein synthesis. At 100 nM, the bacteria respired 91 and 78% of leucine and valine taken up, respectively. Respiration of 3H and 14C isotopes of leucine gave similar results. Most of the nonrespired leucine was recovered in bacterial proteins, while only up to one-half of the nonrespired valine occurred in proteins. In intracellular pools of the bacteria, [3H]leucine reached an isotope saturation of 88 to 100% at concentrations of >40 nM. For [3H]valine, an isotope equilibrium of about 90% was obtained at concentrations of >80 nM. Within an incubation period of typically 1 h, tritiated leucine and valine incorporated into proteins of the bacteria reached an isotope saturation of 2 to 6%. In a 99-h batch experiment, bacterial protein synthesis calculated from incorporation of leucine and valine corresponded to 31 and 51% (10 nM) and 89 and 97% (100 nM), respectively, of the chemically determined protein production. Measured conversion factors of 100 nM leucine and valine were 6.4 × 1016 and 6.6 × 1016 cells per mol, respectively, and fell within the expected theoretical values. The present study demonstrates that incorporation of both valine and leucine produces realistic measurements of protein synthesis in freshwater bacteria and that the incorporation can be used as a measure of bacterial production.  相似文献   

11.
The in vivo incorporation of [3 5S]sulfate, [3H]fucose and [3H]leucine into sciatic nerve myelin was investigated. Polyacrylamide gel electrophoresis of the proteins indicated that the 3 5S-labeling of proteins occurred almost exclusively in the major myelin protein. A smaller myelin glycoprotein migrating just ahead of the major one was labeled with [3H]fucose but did not incorporate 3 5S to a detectable extent. There was little or no 3 5S associated with basic proteins on polyacrylamide gels when the proteins were extracted with chloroform/methanol. Fucose-labeled myelin glycoproteins were converted to glycopeptides by pronase digestion. The glycopeptides gave a single peak on Sephadex G-50 in which the 3H and 3 5S coincided. The association of 3 5S with glycopeptides was not caused by binding of sulfatide or free inorganic sulfate. This study shows that the major myelin protein in the sciatic nerve of the rat is glycosylated and sulfated.  相似文献   

12.
The recovery, electrophoretic composition and synthesis of the myelin, particulate protein and soluble protein subfractions of rat sciatic nerve were compared in normal, sham-operated, and degenerating rat sciatic nerve at one, three and five days after neurotomy. Both single and double isotope methods were used to measure changes in synthesis in vitro and double isotope methods were used in vivo. The wet weights of nerves undergoing Wallerian degeneration for 5 days increased by 40 percent compared to normal and sham-operated nerves. The recovery, specific radioactivity, and synthesis of the myelin was reduced. The effect on myelin protein synthesis was similar in vitro and in vivo. The myelin loss was relatively constant in amount (30–40 g) regardless of differences in nerve sizes of young and old rats, consequently the percentage of myelin loss was inversely proportional to nerve size.The recovery of particulate protein increased, its rate of synthesis remained unchanged, and accordingly the specific radioactivity was decreased. The recovery, specific radioactivity, and the rate of synthesis of the soluble protein fraction were all elevated. The protein composition of the three fractions, as analyzed qualitatively by polyacrylamide disc gel electrophoresis, remained essentially unchanged through five days of degeneration.With regard to comparisons of the single and double isotope methods, results shows that the latter are more ideally suited to measuring changes in synthesis during the non-steady state conditions that are characteristics of rapid degeneration.  相似文献   

13.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

14.
Four inhibitors of oligosaccharide processing were used to investigate their effects on the transport of PNS myelin glycoproteins through the secretory pathway, as well as to gain further insight into the structure of the oligosaccharide chains of the P0 and 19-kDa glycoproteins. Several different inhibitors of oligosaccharide processing were incubated with chopped peripheral nerves from young rats (21-24 days of age) and the uptake of 14C-amino acid and [3H]fucose or [3H]mannose was measured in P0 and the 19-kDa glycoprotein after separation of homogenate and myelin proteins on polyacrylamide gels. [3H]Mannose was not found as suitable as [3H]fucose as an oligosaccharide precursor because glucose used as an energy source profoundly inhibited the uptake of [3H]mannose. The substitution of pyruvate as an energy source, however, resulted in incomplete glycosylation, poor amino acid uptake, and truncated oligosaccharide chains. Endoglycosidase H cleaved approximately 50% of the P0 labeled with [3H]fucose and 14C-amino acid. The lower molecular weight protein resulting from endoglycosidase H cleavage contained approximately one-half the [3H]fucose label on the protein, whereas one-half remained on the oligosaccharide chain of the undegraded P0, indicating that at least one-half the P0 has a hybrid structure. Deoxynojirimycin, deoxymannojirimycin, and castanospermine inhibited incorporation of [3H]fucose into the oligosaccharide chains of P0 and the 19-kDa glycoprotein as predicted from their action in blocking various stages of trimming of high mannose structures before the addition of fucose. P0 synthesized in the presence of these inhibitors was cleaved to a greater extent by endoglycosidase H than the normal protein, indicating increased vulnerability to this enzyme with arrest of normal processing. Similar results were obtained for the 19-kDa glycoprotein. Both the incompletely processed P0 and the 19-kDa glycoprotein formed in the presence of these inhibitors appeared to be transported normally into myelin.  相似文献   

15.
The uptake of [3H]norepinephrine ([3H]NE) was studied in dissociated brain cell cultures prepared from 8-day-old chick embryos using the whole brain (minus optic lobes). Uptake of [3H]NE, 5×10–9 M, 10 min incubation, in freshly dissociated noncultured embryonic chick brain cells, was detected in 6-day-old embryos; it was temperature and drug (cocaine, metanephrine) sensitive and increased with brain development. In cultured cells, which were assayed at various days in culture, the increase in [3H]NE accumulation per culture was less than that seen in freshly dissociated noncultured embryonic cells. When [3H]NE uptake was expressed per mg protein, a decrease with days in culture was observed, reflecting perhaps a dilution of growth or proliferation of cells not accumulating NE. Metanephrine, 5×10–6 M, an inhibitor of extraneuronal uptake, inhibited [3H]NE in 5-day-old cultures whereas desmethylimipramine, an inhibitor of neuronal uptake, inhibited [3H]NE uptake in 15- and 20-day-old cultures. Cocaine, another neuronal inhibitor, inhibited [3H]NE at 10 and 15 days only. We interpret these findings to suggest that during early growth in culture most neuroblasts accumulate NE nonspecifically and, as neuronal maturation proceeds, NE accumulation becomes specific.  相似文献   

16.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of [3H]uridine incorporation into RNA and [3H]leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10−21 M). Insulin stimulated the rate of [3H]thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100–1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H]thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of [3H]uridine, [3H]thymidine and [3H]leucine into their respective precursor pools is not responsible for the apparent stimulatation of RNA, DNA and protein synthesis.  相似文献   

17.
—An in vitro system using mouse brain homogenates has been developed to study the synthesis of the myelin basic proteins. Incorporation of [3H]leucine into protein in this system did not require additional energy sources. The system was slightly stimulated by glucose and strongly inhibited by puromycin. Myelin basic proteins were isolated from incubation mixtures by conventional techniques of solvent extraction and column chromatography, and finally separated into the large and small components by polyacrylamide gel electrophoresis in an acetic acid-urea system. Gels were stained, sliced, dissolved, and counted, and relative rates of incorporation of label into the two basic proteins were determined at several ages. The ratio of radioactivity incorporated into the small (S) and large (L) basic proteins, over a 30 min incubation period, was found to increase from 0.97 at 10 days to 1.59 at 21 days and decline thereafter. These data generally agree with earlier studies on the in vivo synthesis of the myelin basic proteins in mice. An interesting feature of the time course was that incorporation of [3H]leucine into the purified myelin basic proteins relative to incorporation into total protein in the homogenate increased almost 2-fold during the course of the 30-min incubation. This suggested that post-translational processing of at least one of the two basic proteins was occurring. To examine this possibility further, experiments were conducted in which incorporation was allowed to proceed for 2–5 min, before being inhibited with puromycin; the incubation was then continued for up to 25 min longer. Although total incorporation was inhibited immediately after puromycin addition, label was found to continue to accumulate in the basic proteins to the extent of 30–100% above controls. These data support the notion that the MBPs are synthesized as precursors and then processed to yield authentic myelin basic proteins and that this processing can occur in vitro.  相似文献   

18.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in -minimal essential medium containing either vehicle, genistein (10–7–10–5 M) or daidzein (10–7–10–5 M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein (10–5 M) or daidzein (10–5 M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10–7 M) or cycloheximide (10–6 M) in the absence or presence of isoflavones. Moreover, when genistein (10–7–10–5 M) or daidzein (10–6 and 10–5 M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10–7 M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10–6 and 10–5 M) or daidzein (10–5 M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

19.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

20.
The active uptake of [3H]pipecolic acid increased with incubation time and its uptake at 3 min was half of that at 20 min. [14C]GABA uptake rose earlier, and its uptake at 3 min was almost 80% of that at 20 min. On the other hand, a ratio (pellet/medium) of [3H]pipecolic acid uptake into glial cell-enriched fractions, was much less (0.4–0.6) than that of [14C]GABA (25.8–74.1). GABA, 10–4 M, and pipecolic acid, 10–4 M, produced a significant inhibition of [3H]pipecolic acid uptake into P2 fractions. Pipecolic acid, 10–4 M, significantly reduced the synaptosomal and glial uptake of [14C]GABA. GABA, 10–4 M, affected neither spontaneous nor high K+-induced release of [3H]pipecolic acid from brain slices. It is suggested that pipecolic acid is involved in either synaptic transmission or in its modulation at GABA synapses in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号