首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing RNA blot hybridization and immunoblotting techniques, the changes of the hepatic contents of acetyl-CoA carboxylase mRNA and of the enzyme protein in growing chicks have been investigated. In the post-hatching period, the hepatic mRNA level markedly increased at least 70-fold when compared to that before hatching. This increase was not observed in chicks receiving no diet. These changes were closely paralleled with the rise of the hepatic content of acetyl-CoA carboxylase protein in chicks up to 10 days old. Neither the acetyl-CoA carboxylase mRNA level nor the enzyme quantity significantly changed in heart. It is concluded from these results that the developmental regulation of acetyl-CoA carboxylase in the post-hatching period of chicks is tissue specific and occurs primarily at a pretranslational step. The content of acetyl-CoA carboxylase mRNA in adult chicken liver was low, which is comparable to those in embryos at 3 days before hatching and chicks at hatching day. Although acetyl-CoA carboxylase mRNA was detected in adult chicken brain, heart, lung, kidney, uropygial gland, spleen, testis, and chest muscle as well as liver, the mRNA level in these tissues was much lower than that in liver of growing chicks.  相似文献   

2.
1. A specific antibody, prepared by immunizing rabbits with phosphoenolpyruvate carboxylase (EC 4.1.1.32) purified from adult rat liver, was used to study the appearance of this enzyme in livers from developing rats. 2. Although some inactive precursor of the enzyme may be present in foetal liver, the amount is not sufficient to account for the enzyme appearance at birth. 3. The rate of phosphoenolpyruvate carboxylase synthesis relative to other cytosol proteins increases 20-fold from the foetus to the 1-day-old rat. The high rate of synthesis was maintained at least until 3 days after birth. 4. There was no measurable degradation of phosphoenolpyruvate carboxylase during the first day after birth. During this period the hepatic enzyme content increased 12-fold. 5. When phosphoenolpyruvate carboxylase attained a constant activity in the liver of rats 2 days after birth the half-time of degradation was approx. 13h. 6. We suggest that the pattern of changes occurring during appearance of phosphoenolpyruvate carboxylase is similar to substrate-induced enzyme induction in bacteria.  相似文献   

3.
Fatty acid synthetase activity in chick embryonic liver is negligible compared to that in newly hatched, fed chicks. The enzyme activity is prematurely induced 5–50-fold in 20-day-old embryos and in newly hatched chicks by the administration of insulin, hydrocortisone, growth hormone, glucagon or dibutyryl cyclic AMP. The induction of the enzyme activity is blocked by the administration of cycloheximide, indicating that new protein synthesis is required. Immunochemical titrations of different enzyme preparations from 5-day-old chicks, adult chicken and various inducer-treated embryos gave an identical equivalence point, indicating that the changes in synthetase activity after hormonal induction in embryos are related entirely to changes in content of enzyme. The increase in liver synthetase content after administration of insulin, glucagon or dibutyryl cyclic AMP is directly related to an increase in the rate of synthetase synthesis. The induction of the synthetase activity by suboptimal doses of glucagon or cyclic AMP is potentiated by the phosphodiesterase inhibitory theophylline. There is a very rapid decay of synthetase activity, with a half-life of about 4 h after elevation to higher levels following administration of insulin, glucagon or dibutyryl cyclic AMP. Glucagon and dibutyryl cyclic AMP induction of the synthetase activity is observed early in the embryonic development, whereas insulin induction is noted 2 days before hatching. Insulin, glucagon and cyclic AMP are potentially capable of altering the levels of glycolytic intermediates which may be involved in the induction of synthetase.  相似文献   

4.
1. The conversion of [U-(14)C]glucose into carbon dioxide, cholesterol and fatty acids in liver slices and the activities of ;malic' enzyme, citrate-cleavage enzyme, NADP-linked isocitrate dehydrogenase and hexose monophosphate-shunt dehydrogenases in the soluble fraction of homogenates of liver were measured in chicks that were starved or starved then fed. 2. In newly hatched chicks the incorporation of [U-(14)C]glucose and the activity of ;malic' enzyme did not increase unless the birds were fed. The response to feeding of [U-(14)C]glucose incorporation into fatty acids increased as the starved chicks grew older. 3. Citrate-cleavage enzyme activity increased slowly even when the newly hatched chicks were unfed. On feeding, citrate-cleavage enzyme activity increased at a much faster rate. 4. In normally fed 20-day-old chicks starvation decreased the incorporation of [U-(14)C]glucose into all three end products and depressed the activities of ;malic' enzyme and citrate-cleavage enzyme. Re-feeding increased all of these processes to normal or higher-than-normal levels. 5. In both newly hatched and 20-day-old chicks starvation increased the activity of isocitrate dehydrogenase and feeding or re-feeding decreased it. 6. Very little change in hexose monophosphate-shunt dehydrogenase activity was observed during the dietary manipulations. 7. The results indicate that increased substrate delivery to the liver is the principal stimulus to the increased rate of glucose metabolism observed in newly hatched chicks. The results also suggest that changes in the activities of ;malic' enzyme and citrate-cleavage enzyme are secondary to an increased flow of metabolites through the glucose-to-fatty acid pathway and that the dehydrogenases of the hexose monophosphate shunt play a minor role in NADPH production for fatty acid synthesis.  相似文献   

5.
A specific antibody against liver cytosol phosphoenolpyruvate carboxylase (EC 4.1.1.32) was used to isolate the enzyme from liver and adipose tissue. With this technique we have shown that phosphoenolpyruvate carboxylase synthesis in starved rats accounts for 3% of the total synthesis of cytosol protein in each tissue. Re-feeding starved animals decreases this relative rate of phosphoenolpyruvate carboxylase synthesis to 0.2% and 1% respectively in liver and adipose tissue, and the activity of the enzyme in each tissue is decreased to 25% of the starvation value. An additional starvation period is accompanied by an increased rate of enzyme synthesis, but the response to starvation is considerably slower than that caused by re-feeding. The degradation rate of phosphoenolpyruvate carboxylase is also subject to regulation. Thus re-feeding starved animals decreases the half-life of the enzyme in liver from 13h to 5.2h, but the rapid rate of degradation is maintained at least during the first 20h of subsequent starvation. Only slight changes in the degradation rate of phosphoenolpyruvate carboxylase are found in adipose tissue. We conclude that the large alterations in the rate of enzyme synthesis during a starvation–re-feeding cycle are the major cause of fluctuations in activity.  相似文献   

6.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of fatty acids. Because fatty acids are required during myelination in the developing brain, it was proposed that the level of acetyl-CoA carboxylase may be highest in embryonic brain. The presence of acetyl-CoA carboxylase activity was detected in chick embryo brain. Its activity varied with age, showing a peak in the 17-18-day-old embryo and decreasing thereafter. The enzyme, affinity-purified from 18-day-old chick embryo brain, appeared as a major protein band on polyacrylamide electrophoresis gels in the presence of sodium dodecyl sulfate (Mr 265,000), indistinguishable from the 265 kDa isozyme of liver acetyl-CoA carboxylase. It had significant activity (Sp act = 1.1 mumol/min per mg protein) in the absence of citrate. There was a maximum stimulation of only 25% in the presence of citrate. Dephosphorylation using [acetyl-CoA carboxylase] phosphatase 2 did not result in activation of the enzyme. Palmitoyl-CoA (0.1 mM) and malonyl-CoA (1 mM) inhibited the activity to 95% and 71%, respectively. Palmitoylcarnitine, however, did not show significant inhibition. The enzyme was inhibited (greater than 95%) by avidin; however, avidin did not show significant inhibition in the presence of excess biotin. The enzyme was also inhibited (greater than 90%) by antibodies against liver acetyl-CoA carboxylase. An immunoblot or avidin-blot detected only one protein band (Mr 265,000) in preparations from chick embryo brain or adult liver. These observations suggest that acetyl-CoA carboxylase is present in embryonic brain and that the enzyme appears to be similar to the 265 kDa isozyme of liver.  相似文献   

7.
8.
Experimental hyperphenylalaninemia has been induced in 5-day-old chicks by dietary treatments with phenylalanine and -methylphenylalanine. An increase of nearly 8-fold in plasma Phe/Tyr ratio was found after 4 days of supplementation the standard diet with 5% phenylalanine plus 0.4% -methylphenylalanine. The increase in this ratio was about 13-fold after 9 days of the same treatment. Similar results were observed in brain and liver, although the increases were smaller than those found in plasma. Total body, brain and liver weight decreased after 9 days of treatment. Phenylalanine plus -methylphenylalanine administration to 5-day-old chicks produced a significant decrease in the 3-hydroxy-3-methylglutary-CoA reductase and mevalonate-5-pyrophosphate decarboxylase specific activities from both brain and liver. These results demonstrated for the first time that experimental hyperphenylalaninemia inhibited different enzyme activites directly implicated in the regulation of cholesterogenesis. Therefore, a reduced cholesterol synthesis in brain may evidenciate the theory of an impaired myelination leading to mental retardation in phenylketonuria patients.  相似文献   

9.
Hague DR  Sims TL 《Plant physiology》1980,66(3):505-509
Illumination (22,000 lumens per meter2) of etiolated maize plants for 80 hours brings about a 5-fold increase in phosphoenolpyruvate carboxylase activity per unit of protein. An increase in carboxylase protein and incorporation of [35S]methionine into the protein occurs simultaneously with the activity increase. In green plants, the level of phosphoenolpyruvate carboxylase protein and enzyme activity is dependent on the intensity of light during growth. These results are consistent with the conclusion that the activity increase results from light-stimulated de novo synthesis of phosphoenolypyruvate carboxylase protein.  相似文献   

10.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

11.
Cellular transglutaminase activity was induced in simian virus-transformed human embryonic lung fibroblasts (WI-38 VA13A) by sodium butyrate. The level of enzyme activity approached a maximum by 6 days; 9–11-fold higher in the presence of sodium butyrate (1 mM) than in its absence. The observed increases in cellular transglutaminase activity could be entirely accounted for by equivalent increases in the levels of enzyme protein measured by inhibition enzyme-linked immunosorbent assay. Sodium butyrate also increased the rate of enzyme synthesis, but had no effect on the rate of cellular transglutaminase degradation. The increase in the rate of enzyme synthesis was matched by an increased level of translatable transglutaminase mRNA as measured in a cell-free translation system. Our results suggest that sodium butyrate regulates cellular transglutaminase at the pretranslational level.  相似文献   

12.
During differentiation of 3T3 preadipocytes into adipocytes the activity of pyruvate carboxylase, a key lipogenic enzyme, rises about 20-fold. This increase of enzymatic activity is correlated with a comparable rise in the rate of incorporation of [35S]methionine into immunoadsorbable pyruvate carboxylase. Polyadenylated RNA, isolated from differentiated 3T3 adipocytes, directs the synthesis of pyruvate carboxylase in a messenger-dependent reticulocyte lysate translation system at a 18-fold greater rate than that isolated from undifferentiated cells. Thus, it appears that the differentiation-induced rise in the cellular level of pyruvate carboxylase results from an increased rate of carboxylase synthesis due to a rise in the level of translatable carboxylase messenger RNA.  相似文献   

13.
Changes in the activities of acetyl-CoA carboxylase and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase were studied in primary cultures of adult-rat hepatocytes after exposure of the cells to insulin and/or carbohydrates. To determine the contribution of protein synthesis to changes in enzyme activity, the relative rate of synthesis of each enzyme was measured and the amount of translatable mRNA coding for the enzymes was determined by translation in vitro and immunoprecipitation. Addition of insulin to the culture medium increased the activities of acetyl-CoA carboxylase and HMG-CoA reductase by approx. 4- and 3-fold respectively. Although similar increases in the relative rate of synthesis of each protein and template activity were noted, initial increases in the activity of each enzyme occurred before any changes in protein synthesis were observed, suggesting the involvement of post-translational modification of enzyme activity in addition to changes in protein synthesis. The addition of fructose to the culture medium, in the absence of insulin, increased the activity of the carboxylase and the reductase approx. 3-fold, similar to the effects of insulin. However, the effect of fructose was to increase the rate of synthesis and the amount of translatable mRNA coding for acetyl-CoA carboxylase, whereas the increase in the activity of HMG-CoA reductase was not accompanied by any changes in the rate of synthesis or template activity. The effects of fructose could not be mimicked by glucose unless insulin was also present in the culture medium. Similar to observations in vitro, the injection of insulin or the feeding of a high-fructose diet to rats made diabetic by the injection of streptozotocin produced an increase in the activities of acetyl-CoA carboxylase and HMG-CoA reductase, and only the increase in the activity of the carboxylase was accompanied by an increase in the amount of translatable mRNA coding for the enzyme. The results are discussed in terms of the effects of fructose on the synthesis of enzymes involved in lipogenesis.  相似文献   

14.
1. The administration of l-tryptophan to fed rats produces a twofold increase in hepatic phosphopyruvate carboxylase activity that represents a comparable increase in enzyme protein. With specific antibody against the enzyme we have shown that the increase in phosphopyruvate carboxylase is partially mediated via an actinomycin D-sensitive increase in enzyme synthesis. 2. In starved animals tryptophan increases the enzyme activity without any change in the relative rate of phosphopyruvate carboxylase synthesis. In this condition degradation of the enzyme is retarded by tryptophan by a mechanism that is not prevented by cycloheximide.  相似文献   

15.
The in vivo induction of rat liver acetyl-CoA carboxylase (ACC) the rate-limiting enzyme of fatty acid biosynthesis, has been examined by immunoblotting, avidin blotting, and enzyme isolation. Three high-molecular-weight immunoreactive bands (Mr 220,000-260,000) were recognized in liver extracts by an anti-carboxylase polyclonal antiserum. Two bands, A and B, comigrated on sodium dodecyl sulfate polyacrylamide gels with purified acetyl-CoA carboxylase, were avidin binding, and were dramatically induced following high carbohydrate refeeding. Only band A was recognized on immunoblots using a monoclonal antibody directed against acetyl-CoA carboxylase, suggesting that band B is a proteolytic fragment in which the epitope recognized by the monoclonal antibody is absent. Following refeeding, approximately 57% of acetyl-CoA carboxylase mass (band A + band B) was present in the high-speed supernatant fraction, while 34 and 9% were in the high-speed (microsomal) and low-speed pellet fractions, respectively. Refeeding caused a large increase in total acetyl-CoA carboxylase mass, the magnitude of which differed in the various fractions. In the low-speed supernatant, a 20-fold increase in ACC mass was observed, while a 12-fold increase was seen in the high-speed supernatant. The fold increase in the high-speed pellet was even greater (greater than 27-fold). Acetyl-CoA carboxylase purified by avidin-Sepharose chromatography from fasted/refed rats had an approximate 4-fold higher Vmax and a significantly lower Ka for citrate than enzyme purified from fasted animals. The results of this study indicate that the induction of hepatic ACC that occurs during high carbohydrate refeeding of the fasted rat predominantly involves increases in enzyme content in both cytosol and microsomes, but is also accompanied by an increase in enzyme specific activity.  相似文献   

16.
17.
The short-term regulation of rat liver acetyl-CoA carboxylase by glucagon has been studied in hepatocytes from rats that had been fasted and refed a fat-free diet. Glucagon inhibition of the activity of this enzyme can be accounted for by a direct correlation between phosphorylation, polymer-protomer ratio, and activity. Glucagon rapidly inactivates acetyl-CoA carboxylase with an accompanying 4-fold increase in the phosphorylation of the enzyme and 3-fold increase in the protomer-polymer ratio of enzyme protein. Citrate, an allosteric activator of acetyl-CoA carboxylase required for enzyme activity, has no effect on these phenomena, indicating a mechanism that is independent of citrate concentration within the cell. The observation of these effects of glucagon on acetyl-CoA carboxylase activity is absolutely dependent upon the minimization of proteolytic degradation of the enzyme after cell lysis. Therefore, for the first time, an interrelationship has been demonstrated between phosphorylation, protomer-polymer ratio, and citrate for the inactivation of acetyl-CoA carboxylase by glucagon.  相似文献   

18.
The administration of N6, O2'-dibutyryl cyclic AMP and theophylline to fasted-refed rats produces an 8-fold stimulation of the relative rate of hepatic phosphoenolpyruvate carboxykinase synthesis in 90 min, as measured by isotopic immunochemical techniques in vivo. The mechanism of this induction was studied first by using a homologous, noninitiating cell-free protein-synthesizing system derived from the liver of fasted-refed, cyclic AMP-treated rats. In such a system, a 5-fold increase in phosphoenolpyruvate carboxykinase synthseis is observed at 20 min post-treatment and a 9-fold stimulation at 75 min, indicating a rapid increase in the number of ribosomes engaged in the translation of the enzyme mRNA after exposure to cyclic AMP. The level of functional mRNA coding for phosphoenolpyruvate carboxykinase was then assayed in a wheat germ protein-synthesizing system capable of using rat liver mRNA as template. The template activity for phosphoenolpyruvate carboxykinase synthesis is greatly increased in the poly(A)-containing RNA isolated from cyclic AMP-induced animals. Both the increase in the capacity of the liver extract for in vitro phosphoenolpyruvate carboxykinase synthesis and the emergence of enzyme mRNA detected in the wheat germ assay are completely prevented by a pretreatment with cordycepin at doses which inhibit the appearance in the cytoplasm of newly synthesized poly(A)-containing RNA. These data demonstrate that the induction of hepatic phosphoenolpyruvate carboxykinase by cyclic AMP is characterized by the rapid build-up of newly synthesized, actively translated mRNA coding for the enzyme. The messenger accumulation could be due to an increase in the rate of its production or a decrease in the rate of its degradation.  相似文献   

19.
The light-dependent kinetics of the apparent in vivo synthesis and degradation of 2-carboxyarabinitol 1-phosphate (CA1P) were studied in three species of higher plants which differ in the extent to which this compound is involved in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity. Detailed studies with Phaseolus vulgaris indicate that both the degradation and synthesis of this compound are light-stimulated, although light is absolutely required only for CA1P degradation. We hypothesize that the steady state level of CAIP at any particular photon flux density (PFD) represents a pseudo-steady state balance between ongoing synthesis and degradation of this compound. The rate of CA1P synthesis in P. vulgaris and the resultant reduction in the total catalytic constant of Rubisco were maximal at 200 micromoles quanta per square meter per second following a step decrease from a saturating PFD, and substantially faster than the rate of synthesis in the dark. Under these conditions an amount of CA1P equivalent to approximately 25% of the Rubisco catalytic site content was synthesized in less than 1 minute. The rate of synthesis was reduced at higher or lower PFDs. In Beta vulgaris, the rate of CA1P synthesis at 200 micromoles quanta per square meter per second was substantially slower than in P. vulgaris. In Spinacea oleracea, an apparent noncatalytic tight-binding of RuBP to deactivated sites on the enzyme was found to occur following a step decrease in PFD. When dark acclimated leaves of P. vulgaris were exposed to a step increase in PFD, the initial rate of CA1P degradation was also found to be dependent on PFD up to a maximum of approximately 300 to 400 micromoles quanta per square meter per second. The rate of degradation of this compound was similar in B. vulgaris. In S. oleracea, a step increase in PFD resulted in noncatalytic RuBP binding to Rubisco followed by an apparent release of RuBP and activation of the enzyme. The in vivo rate of change of Rubisco activity in response to an increase or decrease in PFD was similar between species despite the differences between species in the mechanisms used for the regulation of this enzyme's activity.  相似文献   

20.
Cu2Zn2-superoxide dismutase (CuZn-SOD) was purified from chicken liver. The liver enzyme had a subunit Mr of 16900 and contained equimolar amounts of copper and zinc [0.26% (w/w) for each]. Aortic CuZn-SOD had the same Mr as estimated by gel filtration and cross-reacted with antibodies to the liver enzyme. Both enzymes were inhibited by 1.0 mM-NaCN. Within 24-72 h after hatching, total SOD activity in aorta rose 3-fold over the day-1 level and stayed elevated for 10 days. With low dietary copper, the total SOD activity rose as before, but then decayed progressively to non-detectable levels in 10 days. Both the cyanide-sensitive (CuZn-SOD) and insensitive (mangano-SOD) activities fell, but not at the same rate. When the 10-day-old deficient chicks were injected with 0.5 mumol of CuSO4 intraperitoneally, SOD activity in aorta was restored to control levels in about 8 h. Despite non-measurable SOD activity in aorta, extracts from the 15-day-old-deficient-chick tissue contained as much, or slightly more, immunoreactive CuZn-SOD protein as age-matched control tissue. The data show clearly that dietary copper regulates SOD activity in the aortas of young developing animals. They further suggest that a copper deficiency suppresses CuZn-SOD activity without inhibiting synthesis or accumulation of the CuZn protein in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号