首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a newly developed, extracellular vibrating electrode, we studied the ionic composition of the current pulses which traverse the developing Pelvetia embryo. External Na+, Mg2+, or SO42?, are not needed for the first 20 min of pulsing. In fact, lowering external Na+ or Mg2+ (or K+) actually stimulates pulsing. Since tracer studies show that Ca2+ entry is speeded by Na+, Mg2+, or K+ reduction, these findings suggest that Ca2+ entry triggers pulsing. A sevenfold reduction in external Cl? raises pulse amplitudes by 60%. Moreover, Cl? is the only major ion with an equilibrium potential near the pulse reversal potential. These facts suggest that Cl? efflux carries much of the “inward” current. We propose a model for pulsing in which increased Ca2+ within the growing tip opens Cl? channels. The resulting Cl? efflux slightly depolarizes the membrane and thus drives a balancing amount of K+ out. Thus, the pulses release KCl and serve to relieve excess turgor pressure. By letting Ca2+ into the growing tip, they should also strengthen the transcytoplasmic electrical field which is postulated to pull growth components toward this tip.  相似文献   

2.
In ovarian follicles of Drosophila melanogaster, ion substitution experiments revealed that K+ is the greatest contributor (68%) in setting oocyte steady‐state potential (Em), while Mg2+ and a metabolic component account for the rest. Because of the intense use made of Drosophila ovarian follicles in many lines of research, it is important to know how changes in the surrounding medium, particularly in major diffusible ions, may affect the physiology of the cells. The contributions made to the Drosophila oocyte membrane potential (Em) by [Na+]o, [K+]o, [Mg2+]o, [Ca2+]o, [Cl?]o, and pH (protons) were determined by substitutions made to the composition of the incubation medium. Only K+ and Mg2+ were found to participate in setting the level of Em. In follicles subjected to changes in external pH from the normal 7.3 to either pH 6 or pH 8, Em changed rapidly by about 6 mV, but within 8 min had returned to the original Em. Approximately half of all follicles exposed to reduced [Cl?]o showed no change in Em, and these all had input resistances of 330 kΩ or greater. The remaining follicles had smaller input resistances, and these first depolarized by about 5 mV. Over several minutes, their input resistances increased and they repolarized to a value more electronegative than their value prior to reduction in [Cl?]o. Together, K+ and Mg2+ accounted for up to 87% of measured steady‐state potential. Treatment with sodium azide, ammonium vanadate, or chilling revealed a metabolically driven component that could account for the remaining 13%. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   

4.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

5.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

6.
《Developmental biology》1987,122(2):432-438
The fertilization potential of the Pseudocentrotus depressus egg involved three transiently depolarizing components which had a different time course and a peak value. Three peaks were at less than 10 sec, 43 ± 4 sec (mean ± SD), and 182 ± 22 sec after the onset of the fertilization potential. Their peak values (mean ± SD) were 37 ± 4, 17 ± 3, and −31 ± 5 mV in standard artificial sea water. The effect of external ions on the membrane potential at the peak of the second component was measured with a conventional voltage-recording microelectrode. The peak value changed 51 mV with a 10-fold change in external Na+ concentration. However, it was about 65 mV more negative than the equilibrium potential of Na+, assuming that the internal Na+ concentration was 13.5 mM. H+, Ca2+, Mg2+, and Cl did not contribute to the peak value. The peak value was sensitive to the external K+ concentration. These data fitted a theoretical line obtained from the Goldman-Hodgkin-Katz equation, using a ratio of PNa:PK:PCl = 1.1:1.0:0. This means that the permeability to both Na+ and K+ is responsible for the second component of the fertilization potential. The fertilization potential was also measured in the artificial sea water containing Li+ or Cs+. The egg at the second component of the fertilization potential was almost equally permeable to Li+ as well as Na+ or K+ and somewhat permeable to Cs+. By contrast, the resting membrane potential before fertilization depended to a large extent upon K+ permeability.  相似文献   

7.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

8.
Forest ecosystems are self-fertilizing systems, and development of forest stands depends on nutrient supply via biogeochemical cycling within the ecosystem. Therefore, it is important to clarify the nutrient cycle mediating growth and development. In addition, long-term hydrochemical monitoring is needed to understand the influence of environmental changes on biogeochemical cycling in forest ecosystems. The Oyasan Experimental Forest Watershed (OEFW) is located in the Field Museum Oyasan, the university forest of Tokyo University of Agriculture and Technology, in Gunma prefecture, Japan. OEFW comprises two small adjacent forested watersheds—A-watershed and B-watershed—with respective areas of 1.3 and 1.8 ha. A-watershed is a reestablished forest planted with sugi (Japanese cedar; Cryptomeria japonica) and hinoki (Japanese cypress; Chamaecyparis obtusa) in 1976, and has been managed intensively with fertilizer application. By contrast, B-watershed is an established forest planted with sugi and hinoki in 1907. No forest practices have been carried out except for thinning of suppressed trees in 1983. However, the sugi plantation on the lowest slope (18% of the watershed area) was cut in 2000, and sugi was replanted the following year. In this data paper, we present data on the daily precipitation, discharge, pH, and concentrations of major nutrients (Ca2+, Mg2+, K+, Na+, NH4 +, Cl, NO3 , and SO4 2−) in rainwater and stream water since November 1978. The arithmetical mean pH of precipitation, stream water in A- and B-watershed from the beginning of the monitoring to the present were 4.77 ± 0.67, 6.85 ± 0.41 and 6.88 ± 0.36 (average ± SD), respectively. The arithmetical mean concentrations in precipitation in mmolc L−1 were 0.030 ± 0.030 for Ca2+, 0.010 ± 0.011 for Mg2+, 0.009 ± 0.013 for K+, 0.020 ± 0.024 for Na+, 0.035 ± 0.041 for NH4 +, 0.026 ± 0.029 for Cl, 0.033 ± 0.038 for NO3 , and 0.046 ± 0.043 for SO4 2−. The mean concentrations in stream water in A-watershed were 0.180 ± 0.032 for Ca2+, 0.073 ± 0.013 for Mg2+, 0.018 ± 0.009 for K+, 0.182 ± 0.024 for Na+, 0.010 ± 0.010 for NH4 +, 0.060 ± 0.008 for Cl, 0.111 ± 0.038 for NO3 , and 0.074 ± 0.012 for SO4 2−; whereas for B-watershed the mean concentrations were 0.169 ± 0.025 for Ca2+, 0.079 ± 0.016 for Mg2+, 0.018 ± 0.005 for K+, 0.192 ± 0.026 for Na+, 0.010 ± 0.010 for NH4 +, 0.065 ± 0.010 for Cl, 0.093 ± 0.025 for NO3 , and 0.087 ± 0.011 for SO4 2−.  相似文献   

9.
To assay the effects of stripping frequency on semen characteristics of Caspian brown trout, Salmo trutta caspius, the chemical composition of seminal fluid, sperm production (semen volume, sperm density, spermatocrit,) and sperm motility characteristics (percentage and duration of motility) were investigated over four times stripping during the spawning season. According to data, semen volume, sperm density, osmolality and the concentrations of Na+, Cl, K+, Ca2+, Mg2+ and total protein gradually decreased by increasing of stripping frequency. The values of glucose and triglyceride had no significant changes over four times stripping. Also, the values of semen pH, the percentage (5 s after activation) and duration of motility were statistically stable until third stripping but a decrease was recorded for these parameters in the fourth stripping. As well as, significant positive correlations were found for sperm density vs. K+, Cl, Na+, Ca2+, Mg2+, total protein, spermatocrit; the percentage of motile spermatozoa vs. Ca2+, Mg2+, K+, Cl, Na+, total protein, and also the duration of motility vs. K+, Cl, total protein and pH. In text, specific objectives of this study have been expressed.  相似文献   

10.
Recent studies focusing on the consequences of feeding for ion and water balance in freshwater fish have revealed the need for similar comparative studies in seawater fish. A detailed time course sampling of gastrointestinal (GI) tract contents following the ingestion of a single meal of a commercial diet revealed the assimilation of both water and dietary ions (Na+, Cl?, K+, Ca2+, Mg2+) along the GI tract of seawater-acclimated rainbow trout (Oncorhynchus mykiss) which had been fasted for 1 week. Consumption of the meal did not change the drinking rate. There was a large secretion of fluid into the anterior intestine and caecae (presumably bile and/or pancreatic secretions). As a result, net assimilation (63%) of the ingested water along the GI tract was lower than generally reported for fasted trout. Mg2+ was neither secreted into nor absorbed from the GI tract on a net basis. Only K+ (93% assimilated) and Ca2+ (43% assimilated) were absorbed in amounts in excess of those provided by ingested seawater, suggesting that dietary sources of K+ and Ca2+ may be important to seawater teleosts. The oesophagus–stomach served as a major site of absorption for Na+, Cl?, K+, Ca2+, and Mg2+, and the anterior intestine and caecae as a major site of net secretion for all of these ions, except Cl?. Despite large absorptive fluxes of these ions, the ionic composition of the plasma was maintained during the digestion of the meal. The results of the present study were compared with previous work on freshwater-acclimated rainbow trout, highlighting some important differences, but also several similarities on the assimilation of water and ions along the gastrointestinal tract during digestion. This study highlights the complicated array of ion and water transport that occurs in the intestine during digestion while revealing the importance of dietary K+ and Ca2+ to seawater-acclimated rainbow trout. Additionally, this study reveals that digestion in seawater-acclimated rainbow trout appears to compromise intestinal water absorption.  相似文献   

11.
12.
In this investigation, morphological and physiological differences between fringe and dwarf Avicennia marina (Forsk.) Vierh. growing in seawater and hypersalinity were compared along a tree height and productivity gradient in Richards Bay, South Africa. Dwarf trees had thicker leaves and cuticles, lower specific leaf area and salt gland frequency, while the concentrations of total chlorophyll and chlorophylls a and b were lower by 26, 23 and 39%, respectively, compared to fringe trees. Soil ψ and soil salinity were −3.04 ± 0.09 MPa and 36 ± 3 psu in the fringe zone, compared to −7.24 ± 0.38 MPa and 58 ± 5 psu, respectively, in the dwarf zone. Midday minimum xylem ψ was −4.3 ± 0.23 MPa in the fringe zone and −6.4 ± 0.28 MPa in the dwarf zone. In leaves of dwarf trees, the concentration of Na+ was 30% higher, while those of K+, Ca2+ and Mg2+ were lower by 41, 38 and 55%, respectively, than fringe trees. The Na+/K+ ratio of leaves was 2.1 ± 0.03 for fringe and 5.6 ± 0.05 for dwarf trees. Rates of secretion of Na+, Cl, K+, Ca2+ and Mg2+ over 24 h were significantly lower in dwarf trees by 44, 45, 78, 66 and 54%, respectively. In fringe trees, the rate of secretion of Na+ and Cl was about 28% higher during the night than during the day, while in dwarf trees the corresponding increase was about 174%. CO2 exchange, leaf conductance, quantum yield of PS II, ETR through PSII and intrinsic photochemical efficiency of PS II were significantly lower in dwarf trees by 50, 83, 39, 33 and 12%, respectively.  相似文献   

13.
In juveniles of Homarus gammarus (L.) reared at 15°C, mortality occurs only in salinities below 17%. and above 46%.. Regulation is isosmotic in high salinities, and slightly hyperosmotic in low salinities. Regulation of Cl?, Na+, K+, Ca2+, and Mg2+ ions is described. Important similarities exist between these results and those obtained in H. americanus H. Milne Edwards.  相似文献   

14.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

15.
Yuncai Hu  Urs Schmidhalter 《Planta》1998,204(2):212-219
Wheat leaf growth is known to be spatially affected by salinity. The altered spatial distribution of leaf growth under saline conditions may be associated with spatial changes in tissue mineral elements. The objective of this study was to evaluate the spatial distributions of mineral elements and their net deposition rates in the elongating and mature zones of leaf 4 of the main stem of spring wheat (Triticum aestivum L. cv. Lona) during its linear growth phase under saline soil conditions. Plants were grown in an illitic-chloritic silty loam with 0 and 120 mM NaCl. Three days after emergence of leaf 4, sampling was begun at 3 and 13 h into the 16-h light period. Spatial distributions of fresh weight (FW), dry weight (DW), and Na+, K+, Cl, NO 3, Ca2+, Mg2+, total P, and total N in the elongating and mature tissues were determined on a millimeter scale. The patterns of spatial distribution of Na+, Cl, K+, NO3 , and Ca2+ in the growing leaves were affected by salinity, while those of Mg2+, total P, and total N were not. Sodium, K+, Cl, Ca2+, Mg2+, and total N concentrations (mmol · kg−1 FW) were consistently higher at 120 mM NaCl than at 0 mM NaCl along the leaf axis from the leaf base, whereas NO3 concentration was lower at 120 mM NaCl. Deposition rates of all nutrients were greatest in the elongation zone. The elongation zone was the strongest sink for mineral elements in the leaf tissues. Local net deposition rates of Na+, Cl, Ca2+, and Mg2+ (mmol · kg−1 FW · h−1) in the most actively elongating zone were enhanced by 120 mM NaCl, whereas for NO3 this was depressed. The lower supply of NO 3 to growing leaves may be responsible for the inhibition of growth under saline conditions. Higher tissue concentrations of Na+ and Cl may cause ion imbalance but probably did not result in ion toxicity in the growing leaves. Potassium, Ca2+, Mg2+, total P, and total N are less plausibly responsible for the reduction in leaf growth in this study. Higher tissue K+ and Ca2+ concentrations at 120 mM NaCl are probably due to the presence of high Ca2+ in the soil of this study. Received: 13 March 1997 / Accepted: 9 June 1997  相似文献   

16.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

17.
To assess whether foliar application of K+S as potassium sulfate (K2SO4) could alleviate the adverse effects of salt on sunflower (Helianthus annuus L. cv. SF-187) plants, a greenhouse experiment was conducted. There were two NaCl levels (0 and 150 mM) applied to the growth medium and six levels of K+S as K2SO4 (NS (no spray), WS (spray of water+0.1% Tween 20 solution), 0.5% K+0.21% S, 1.0% K+0.41% S, 1.5% K+0.62% S, and 2.0% K+0.82% S in 0.1% Tween-20 solution) applied two times foliarly to non-stressed and salt-stressed sunflower plants. Salt stress markedly repressed the growth, yield, photosynthetic pigments, water relations and photosynthetic attributes, quantum yield (Fv/Fm), leaf and root K+, Mg2+, P, Ca2+, N as well as K+/Na+ ratios, while it enhanced the cell membrane permeability, and leaf and root Na+ and Cl concentrations. Foliar application of potassium sulfate significantly improved growth, achene yield, photosynthetic and transpiration rates, stomatal conductance, water use efficiency, leaf turgor and enhanced shoot and leaf K+ of the salt-stressed sunflower plants, but it did not improve leaf and root Na+, Cl, Mg2+, P, Ca2+, N as well as K+/Na+ ratios. The most effective dose of K+S for improving growth and achene yield was found to be 1.5% K+0.62% S and 1% K+0.41% S, respectively. Improvement in growth of sunflower plants due to exogenously applied K2SO4 was found to be linked to enhanced photosynthetic capacity, water use efficiency, leaf turgor and relative water content.  相似文献   

18.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

19.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

20.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth rate of callus and Na+, K+, Cl, Mg+2, and Ca+2 contents of the cultured rice tissues were determined at the end of 0, 2, 4 and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing both NaCl and hydroxyproline showed increased dry weight and enhanced intracellular levels of K+, Mg+2 and Ca+2. The accumulation of Na+ and Cl ions was less in the hydroxyproline resistant calli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号