首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple roles of integrins in cell motility   总被引:6,自引:0,他引:6  
Motility is essential for many important biological events, including embryonic development, inflammatory responses, wound healing, and tumor metastasis. During these events cells are in dynamic contact with the extracellular matrix through integrins. Integrins are the primary receptors for extracellular matrix proteins and consequently are required for cell motility. Cells have evolved multiple mechanisms to modulate integrin adhesive functions, which impact cell migration. In addition to providing a mechanism that allows cells to contact the extracellular matrix, integrins also promote intracellular signals that stimulate and regulate cell movement. Here we discuss the role of integrins during the multiple steps of cell migration.  相似文献   

2.
Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function. We report that RSK2 mediates Ras/Raf inactivation of integrins. As a result, we find that RSK2 impairs cell adhesion and integrin-mediated matrix assembly and promotes cell motility. Active RSK2 appears to affect integrins by reducing actin stress fibers and disrupting focal adhesions. Moreover, RSK2 co-localizes with the integrin activator talin and is present at integrin cytoplasmic tails. It is thereby in a position to modulate integrin activation and integrin-mediated migration. Activation of RSK2 promotes filamin phosphorylation and binding to integrins. We also find that RSK2 is activated in response to integrin ligation to fibronectin. Thus, RSK2 could participate in a feedback loop controlling integrin function. These results reveal RSK2 as a key regulator of integrin activity and provide a novel mechanism by which it may promote cell migration and cancer metastasis.  相似文献   

3.
Integrins: Structure and Signaling   总被引:7,自引:0,他引:7  
Integrins are cell surface transmembrane glycoproteins that function as adhesion receptors in cell-extracellular matrix interactions and link the matrix proteins to the cytoskeleton. The family of human integrins comprises 24 members, each of which is a heterodimer consisting of 1 of 18 alpha- and 1 of 8 beta-subunits. Integrins play an important role in the cytoskeleton organization and in transduction of intracellular signals, regulating various processes such as proliferation, differentiation, apoptosis, and cell migration. This review summarizes current views on the structure of integrins, integrin associated proteins, and biochemical mechanisms underlying their signaling functions.  相似文献   

4.
Integrin-mediated cell adhesion regulates a vast number of biological processes including migration, survival and proliferation of cells. It is therefore not surprising that defects in integrin function are often rate-limiting for development and profoundly affect the progression of several diseases. The functions of integrins are mediated through the recruitment of cytoplasmic plaque proteins. One of these is integrin-linked kinase, which connects integrins to the actin cytoskeleton and transduces signals through integrins to the extracellular matrix and from integrins to various subcellular compartments.  相似文献   

5.
Fibrillar collagens represent the most abundant extracellular matrix components surrounding fibroblasts. Although there is a large heterogeneity in the collagen composition and in the physiological functions of different tissues, interactions between cells and native collagens monomers are mediated by only two integrins, the α1β1 and α2β1 integrins. In tissue, fibroblasts are exposed to collagen polymers, supramolecular assemblies which might play a role on the availability of the cell-binding sites at the surface of the fibrils. We have addressed this issue by investigating the patterns of adhesion structures in normal human skin fibroblasts exposed to collagen monomers or polymers. Our results showed that cell morphology, cell adhesion pattern, actin organization, and distribution of integrin subunits, talin, vinculin, and phosphotyrosine-containing proteins are dependent on the supramolecular organization of the collagens. In particular, compared to monomers, collagen polymers induced a looser organization of the actin network and a linear clustering of integrins, talin, vinculin, and phosphotyrosine-containing proteins. These results emphasize the role of the physical state of collagen on cellular interactions and underline the role of the extracellular matrix in the phenotypic modulation of fibroblasts. Furthermore, our studies suggest the existence of a local heterogeneity in the biological activity of collagen fibrils.  相似文献   

6.
alpha 5 beta 1 integrin mediates cell adhesion to extracellular matrix by interacting with fibronectin (FN). Mouse lines carrying null mutations in genes encoding either the alpha 5 integrin subunit or FN have been generated previously. Both mutations are embryonic lethal with overlapping defects, but the defects of alpha 5-null embryos are less severe. Primary embryonic cells lacking alpha 5 beta 1 are able to adhere to FN, form focal contacts, migrate on FN, and assemble FN matrix. These results suggest the involvement of (an)other FN receptors(s). In this study, we examined functions of alpha 4 beta 1 and alpha V integrins in embryonic cells lacking alpha 5 beta 1. Our analysis of cells lacking both alpha 4 beta 1 and alpha 5 beta 1 showed that alpha 4 beta 1 is also not required for these FN-dependent functions. Using alpha V-specific blocking reagents, we showed that alpha V integrins are required for alpha 5-null cells, but not wild-type cells, to adhere and spread on FN. Our data also showed that, although the expression levels of alpha V integrins on the wild-type and alpha 5-null cells are similar, there is an increase in recruitment of alpha V integrins into focal contacts in alpha 5-null cells plated on FN, indicating that alpha V integrins can compensate functionally for the loss of alpha 5 beta 1 in focal contacts of alpha 5-null cells. Finally, our data suggested possible roles for alpha V integrins in replacing the role of alpha 5 beta 1 in FN matrix assembly in vitro and in FN-dependent embryonic functions in vivo.  相似文献   

7.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

8.
Corneal scarring is a major cause of blindness worldwide and can result from the deposition of abnormal amounts of collagen fibers lacking the correct size and spacing required to produce a clear cornea. Collagen fiber formation requires a preformed fibronectin (FN) matrix. We demonstrate that the loss of syndecan1 (sdc1) in corneal stromal cells (CSC) impacts cell migration rates, the sizes and composition of focal and fibrillar adhesions, the activation of integrins, and the assembly of fibronectin into fibrils. Integrin and fibronectin expression are not altered on sdc1-null CSCs. Cell adhesion, spreading, and migration studies using low compared to high concentrations of FN and collagen I (CNI) or vitronectin (VN) with and without activation of integrins by manganese chloride show that the impact of sdc1 depletion on integrin activation varies depending on the integrin-mediated activity evaluated. Differences in FN fibrillogenesis and migration in sdc1-null CSCs are reversed by addition of manganese chloride but cell spreading differences remain. To determine if our findings on sdc1 were specific to the cornea, we compared the phenotypes of sdc1-null dermal fibroblasts with those of CSCs. We found that without sdc1, both cell types migrate faster; however, cell-type-specific differences in FN expression and its assembly into fibrils exist between these two cell types. Together, our data demonstrate that sdc1 functions to regulate integrin activity in multiple cell types. Loss of sdc1-mediated integrin function results in cell-type specific differences in matrix assembly. A better understanding of how different cell types regulate FN fibril formation via syndecans and integrins will lead to better treatments for scarring and fibrosis.  相似文献   

9.
Epithelial cells polarize in response to cell-substratum and cell-cell adhesive interactions. Contacts between cells and proteins of the extracellular matrix are mediated by integrin receptors. Of the 24 recognized integrin heterodimers, epithelial cells typically express four or more distinct integrins, with the exact complement dependent on the tissue of origin. Investigation of the roles of integrins in epithelial cell polarization has depended on the use of function-blocking antibodies both to determine ligand specificity of individual integrins and to disrupt and redirect normal morphogenesis. In this article we describe techniques for employing function-blocking anti-integrin antibodies in adhesion assays of the polarized Madin-Darby canine kidney (MDCK) cell line and to demonstrate the involvement of beta1 integrins in collagen-induced tubulocyst formation. These techniques can be easily expanded to other antibodies and epithelial cell lines to characterize specific functions of individual integrins in epithelial morphogenesis.  相似文献   

10.
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin‐linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of β integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.  相似文献   

11.
Glycosylation is one of the most common post-translational modifications, and approximately 50% of all proteins are presumed to be glycosylated in eukaryotes. Branched N-glycans, such as bisecting GlcNAc, beta-1,6-GlcNAc and core fucose (alpha-1,6-fucose), are enzymatic products of N-acetylglucosaminyltransferase III, N-acetylglucosaminyltransferase V and alpha-1,6-fucosyltransferase, respectively. These branched structures are highly associated with various biological functions of cell adhesion molecules, including cell adhesion and cancer metastasis. E-cadherin and integrins, bearing N-glycans, are representative adhesion molecules. Typically, both are glycosylated by N-acetylglucosaminyltransferase III, which inhibits cell migration. In contrast, integrins glycosylated by N-acetylglucosaminyltransferase V promote cell migration. Core fucosylation is essential for integrin-mediated cell migration and signal transduction. Collectively, N-glycans on adhesion molecules, especially those on E-cadherin and integrins, play key roles in cell-cell and cell-extracellular matrix interactions, thereby affecting cancer metastasis.  相似文献   

12.
The ability of cells to attach to each other and to the extracellular matrix is of pivotal significance for the formation of functional organs and for the distribution of cells in the body. Several molecular families of proteins are involved in adhesion, and recent work has substantially improved our understanding of their structures and functions. Also, these molecules are now being targeted in the fight against disease. However, less is known about how their activity is regulated. It is apparent that among the different classes of adhesion molecules, the integrin family of adhesion receptors is unique in the sense that they constitute a large group of widely distributed receptors, they are unusually complex and most importantly their activities are strictly regulated from the inside of the cell. The activity regulation is achieved by a complex interplay of cytoskeletal proteins, protein kinases, phosphatases, small G proteins and adaptor proteins. Obviously, we are only in the beginning of our understanding of how the integrins function, but already now fascinating details have become apparent. Here, we describe recent progress in the field, concentrating mainly on mechanistical and structural studies of integrin regulation. Due to the large number of articles dealing with integrins, we focus on what we think are the most exciting and rewarding directions of contemporary research on cell adhesion and integrins.  相似文献   

13.
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including beta1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both beta1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only beta1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-beta1 and anti-alpha2 integrin mAbs, whereas mAbs blocking CD44, alpha3, alpha5, alpha6, or alphav integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of beta1 integrins was not restored via CD44. Because alpha2beta1-mediated migration was neither synergized nor replaced by CD44-HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.  相似文献   

14.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene occurs in the majority of clear-cell renal cell carcinomas (RCCs). It was previously shown that VHL decreased the abundance of integrins alpha2, alpha5, and beta1, which is consistent with VHL-associated changes in cell-cell and cell - extracellular matrix adhesions. We investigated the mechanism by which VHL downregulates integrins. Although VHL can target hypoxia-inducible factor alpha (HIFalpha) subunits for degradation, VHL-dependent reduction of integrins was independent of O2 concentration and HIFalpha levels. VHL reduced the half-lives of integrins, and this activity was blocked by proteasomal inhibition. Although ectopically expressed FLAG-VHL retained HIFalpha degradation activity, it neither downregulated integrins nor promoted adherens and tight intercellular junctions, in contrast to expressed wild-type VHL. Moreover, integrins co-immunoprecipitated with wild-type VHL, but not FLAG-VHL. These data indicate that the downregulation of integrins by VHL is distinct from the regulation of HIFalpha subunits by VHL, and suggests that the loss of this activity contributes to VHL-associated RCC development through disruption of adherens and tight junctions.  相似文献   

15.
Integrin-mediated cell adhesion and spreading enables cells to respond to extracellular stimuli for cellular functions. Using a gastric carcinoma cell line that is usually round in adhesion, we explored the mechanisms underlying the cell spreading process, separate from adhesion, and the biological consequences of the process. The cells exhibited spreading behavior through the collaboration of integrin-extracellular matrix interaction with a Smad-mediated transforming growth factor beta1 (TGFbeta1) pathway that is mediated by protein kinase Cdelta (PKCdelta). TGFbeta1 treatment of the cells replated on extracellular matrix caused the expression and phosphorylation of PKCdelta, which is required for expression and activation of integrins. Increased expression of integrins alpha2 and alpha3 correlated with the spreading, functioning in activation of focal adhesion molecules. Smad3, but not Smad2, overexpression enhanced the TGFbeta1 effects. Furthermore, TGFbeta1 treatment and PKCdelta activity were required for increased motility on fibronectin and invasion through matrigel, indicating their correlation with the spreading behavior. Altogether, this study clearly evidenced that the signaling network, involving the Smad-dependent TGFbeta pathway, PKCdelta expression and phosphorylation, and integrin expression and activation, regulates cell spreading, motility, and invasion of the SNU16mAd gastric carcinoma cell variant.  相似文献   

16.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

17.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

18.
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.  相似文献   

19.
整合素是一类介导细胞与细胞外基质及细胞与细胞间黏附的细胞黏附分子受体,肿瘤细胞与胞外基质的相互作用对肿瘤的生成及转移有着重要的影响,整合素在肿瘤的生成、侵袭、转移以及肿瘤血管的生成过程中起着重要的作用。本文对整合素的结构、功能,以及它在肿瘤的血管生成过程中的作用,它与细胞外基质间的相互关系做了介绍。  相似文献   

20.
Sarcoglycans are transmembrane proteins that seem to be functionally and pathologically as important as dystrophin. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle. It has been proposed that the dystrophin-glycoprotein complex (DGC) links the actin cytoskeleton with the extracellular matrix and the proper maintenance of this connection is thought to be crucial to the mechanical stability of the sarcolemma. The integrins are a family of heterodimeric cell surface receptors which play a crucial role in cell adhesion including cell-matrix and intracellular interactions and therefore are involved in various biological phenomena, including cell migration, and differentiation tissue repair. Sarcoglycans and integrins play a mechanical and signaling role stabilizing the systems during cycles of contraction and relaxation. Several studies suggested the possibility that integrins might play a role in muscle agrin signalling. On these basis, we performed an immunohistochemical analyzing sarcoglycans, integrins and agrin, on human skeletal muscle affected by sensitive-motor polyneuropathy, in order to better define the correlation between these proteins and neurogenic atrophy due to peripheral neuropathy. Our results showed the existence of a cascade mechanism which provoke a loss of regulatory effects of muscle activity on costameres, due to loss of muscle and neural agrin. This cascade mechanism could determine a quantitative modification of transmembrane receptors and loss of alpha7B could be replaced and reinforced by enhanced expression of the alpha7A integrin to restore muscle fiber viability. Second, it is possible that the reduced cycles of contraction and relaxation of muscle fibers, during muscular atrophy, provoke a loss of mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix. Consequently, these mechanical changes could determine modifications of chemical signals through variations of pathway structural integrins, and alpha7A could replace alpha7B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号