共查询到20条相似文献,搜索用时 15 毫秒
1.
G. BOWES 《Plant, cell & environment》1991,14(8):795-806
Abstract. The global uptake of CO2 in photosynthesis is about 120 gigatons (Gt) of carbon per year. Virtually all passes through one enzyme, ribulose bisphosphate carboxylase/oxygenase (rubisco), which initiates both the photosynthetic carbon reduction, and photorespiratory carbon oxidation, cycles. Both CO2 and O2 are substrates; CO2 also activates the enzyme. In C3 plants, rubisco has a low catalytic activity, operates below its Km (CO2), and is inhibited by O2. Consequently, increases in the CO2/O2 ratio stimulate C3 photosynthesis and inhibit photorespiration. CO2 enrichment usually enhances the productivity of C3 plants, but the effect is marginal in C4 species. It also causes acclimation in various ways: anatomically, morphologically, physiologically or biochemically. So, CO2 exerts secondary effects in growth regulation, probably at the molecular level, that are not predictable from its primary biochemical role in carboxylation. After an initial increase with CO2 enrichment, net photosynthesis often declines. This is a common acclimation phenomenon, less so in field studies, that is ultimately mediated by a decline in rubisco activity, though the RuBP/Pi-regeneration capacities of the plant may play a role. The decline is due to decreased rubisco protein, activation state, and/or specific activity, and it maintains the rubisco fixation and RuBP/Pi regeneration capacities in balance. Carbohydrate accumulation is sometimes associated with reduced net photosynthesis, possibly causing feedback inhibition of the RuBP/Piregeneration capacities, or chloroplast disruption. As exemplified by field-grown soybeans and salt marsh species, a reduction in net photosynthesis and rubisco activity is not inevitable under CO2 enrichment. Strong sinks or rapid translocation may avoid such acclimation responses. Over geological time, aquatic autotrophs and terrestrial C4 and CAM plants have genetically adapted to a decline in the external CO2/O2 ratio, by the development of mechanisms to concentrate CO2 internally; thus circumventing O2 inhibition of rubisco. Here rubisco affinity for CO2 is less, but its catalytic activity is greater, a situation compatible with a high-CO2 internal environment. In aquatic autotrophs, the CO2 concentrating mechanisms acclimate to the external CO2, being suppressed at high-CO2. It is unclear, whether a doubling in atmospheric CO2 will be sufficient to cause a de-adaptive trend in the rubisco kinetics of future C3 plants, producing higher catalytic activities. 相似文献
2.
3.
LAUREL J. ANDERSON †‡ JUSTIN D. DERNER§¶ H. WAYNE POLLEY§ WENDY S. GORDON DAVID M. EISSENSTAT† ROBERT B. JACKSON 《Global Change Biology》2010,16(1):454-468
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca. 相似文献
4.
P. Högy H. Wieser P. Köhler K. Schwadorf J. Breuer J. Franzaring R. Muntifering & A. Fangmeier 《Plant biology (Stuttgart, Germany)》2009,11(S1):60-69
Spring wheat ( Triticum aestivum L. cv. TRISO) was grown for three consecutive seasons in a free-air carbon dioxide (CO2 ) enrichment (FACE) field experiment in order to examine the effects on crop yield and grain quality. CO2 enrichment promoted aboveground biomass (+11.8%) and grain yield (+10.4%). However, adverse effects were predominantly observed on wholegrain quality characteristics. Although the thousand-grain weight remained unchanged, size distribution was significantly shifted towards smaller grains, which may directly relate to lower market value. Total grain protein concentration decreased significantly by 7.4% under elevated CO2 , and protein and amino acid composition were altered. Corresponding to the decline in grain protein concentration, CO2 enrichment resulted in an overall decrease in amino acid concentrations, with greater reductions in non-essential than essential amino acids. Minerals such as potassium, molybdenum and lead increased, while manganese, iron, cadmium and silicon decreased, suggesting that adjustments of agricultural practices may be required to retain current grain quality standards. The concentration of fructose and fructan, as well as amounts per area of total and individual non-structural carbohydrates, except for starch, significantly increased in the grain. The same holds true for the amount of lipids. With regard to mixing and rheological properties of the flour, a significant increase in gluten resistance under elevated CO2 was observed. CO2 enrichment obviously affected grain quality characteristics that are important for consumer nutrition and health, and for industrial processing and marketing, which have to date received little attention. 相似文献
5.
The atmospheric CO2 concentration has risen from the preindustrial level of approximately 290 μl l−1 to more than 350 μl l−1 in 1993. The current rate of rise is such that concentrations of 420 μl l−1 are expected in the next 20 years. For C3 plants, higher CO2 levels favour the photosynthetic carbon reduction cycle over the photorespiratory cycle, resulting in higher rates of carbohydrate production and plant productivity. The change in balance between the two photosynthetic cycles appears to alter nitrogen and carbon metabolism in the leaf, possibly causing decreases in nitrogen concentrations in the leaf. This may result from increases in the concentration of storage carbohydrates of high molecular weight (soluble or insoluble) and/or changes in distribution of protein or other nitrogen containing compounds. Uptake of nitrogen may also be reduced at high CO2 due to lower transpiration rates. Decreases in foliar nitrogen levels have important implications for production of crops such as wheat, because fertilizer management is often based on leaf chemical analysis, using standards estimated when the CO2 levels were considerably lower. These standards will need to be re-evaluated as the CO2 concentration continues to rise. Lower levels of leaf nitrogen will also have implications for the quality of wheat grain produced, because it is likely that less nitrogen would be retranslocated during grain filling. 相似文献
6.
7.
Susan E. Hartley ‡ Clive G. Jones †‡ Gordon C. Couper‡ T. Hefin Jones‡ 《Global Change Biology》2000,6(5):497-506
Experiments were carried out to determine the effects of elevated atmospheric carbon dioxide (CO2) on phenolic biosynthesis in four plant species growing over three generations for nine months in a model plant community. Results were compared to those obtained when the same species were grown individually in pots in the same soils and controlled environment. In the model herbaceous plant community, only two of the four species showed any increase in biomass under elevated CO2, but this occurred only in the first generation for Spergula arvensis and in the second generation for Poa annua. Thus, the effects of CO2 on plant biomass and carbon and nitrogen content were species‐ and generation‐specific. The activity of the principle phenolic biosynthetic enzyme, phenylalanine ammonia lyase (PAL), increased under elevated CO2 in Senecio vulgaris only in Generation 1, but increased in three of the four plant species in Generation 2. There were no changes in the total phenolic content of the plants, except for P. annua in Generation 1. Lignin content decreased under elevated CO2 in Cardamine hirsuta in Generation 1, but increased in Generation 2, whilst the lignin content of P. annua showed no change, decreased, then increased in response to elevated CO2 over the three generations. When the species were grown alone in pots, elevated CO2 increased PAL activity in plants grown in soil taken from the Ecotron community after nine months of plant growth, but not in plants grown in the soil used at the start of the experiment (‘initial' soil). In P. annua, phenolic biosynthesis decreased under elevated CO2 in initial soil, and in both P. annua and S. vulgaris there was a significant interaction between effects of soil type and CO2 level on PAL activity. In this study, plant chemical composition altered more in response to environmental factors such as soil type than in response to carbon supply. Results were species‐specific and changed markedly between generations. 相似文献
8.
Species‐specific responses to atmospheric CO2 enrichment may affect biodiversity, which in turn may alter ecosystem functioning. Here we have explored biodiversity effects in model assemblages of semi‐arid grassland of the northern Negev, Israel, at 280 ppm (pre‐industrial era), 440 ppm (early 21st century) and 600 ppm CO2 (mid to late 21st century). Thirty‐two mostly annual species were grown together in large containers (ca 400 kg each) on native soil and under a dynamic simulation of the Negev winter climate. CO2 enrichment increased concentrations of total non‐structural carbohydrates and C/N ratios, and reduced specific leaf area and nitrogen concentrations in leaves of all species. In contrast to these uniform CO2 effects on leaf quality, biomass and reproductive output remained unchanged in most species, and varied greatly among the few responsive ones (?80 to +145%). Biomass was significantly increased at elevated CO2 in Onobrychis crista‐galli (one of the six legume species) and was reduced in Biscutella didyma (Brassicaceae). Seed yield increased in three out of six legumes and in the root hemiparasite Parentucellia flaviflora, and decreased in the grass Aegilops peregrina. Fruit dry matter tended to be reduced in two Brassicaceae. Onobrychis, the largest and most responsive species present, was the most ‘mesic’ legume, and might have profited most from the higher soil moisture induced by CO2 enrichment. The significant CO2 response of only 5–6 out of 32 species, in particular their altered seed yield, suggests a potential shift in biodiversity. In a future CO2‐enriched atmosphere, ‘mesic’ legumes and root hemiparasites might be favored, while some Brassicaceae and grasses might decline. As indicated by significant 280‐ vs 440‐ppm differences, reductions in leaf nitrogen concentration of grasses and legumes are likely to be under way right now, and may negatively affect grazers. Altered seed yields were more pronounced between 440 and 600 ppm, suggesting that these changes could intensify as the atmospheric CO2 concentration continues to rise. 相似文献
9.
10.
The nature of the interaction between drought and elevated CO2 partial pressure (pCa) is critically important for the effects of global change on crops. Some crop models assume that the relative responses of transpiration and photosynthesis to soil water deficit are unaltered by elevated pCa, while others predict decreased sensitivity to drought at elevated pCa. These assumptions were tested by measuring canopy photosynthesis and transpiration in spring wheat (cv. Minaret) stands grown in boxes with 100 L rooting volume. Plants were grown under controlled environments with constant light (300 µmol m?2 s?1) at ambient (36 Pa) or elevated (68 Pa) pCa and were well watered throughout growth or had a controlled decline in soil water starting at ear emergence. Drought decreased final aboveground biomass (?15%) and grain yield (?19%) while elevated pCa increased biomass (+24%) and grain yield (+29%) and there was no significant interaction. Elevated pCa increased canopy photosynthesis by 15% on average for both water regimes and increased dark respiration per unit ground area in well‐watered plants, but not drought‐grown ones. Canopy transpiration and photosynthesis were decreased in drought‐grown plants relative to well‐watered plants after about 20–25 days from the start of the drought. Elevated pCa decreased transpiration only slightly during drought, but canopy photosynthesis continued to be stimulated so that net growth per unit water transpired increased by 21%. The effect of drought on canopy photosynthesis was not the consequence of a loss of photosynthetic capacity initially, as photosynthesis continued to be stimulated proportionately by a fixed increase in irradiance. Drought began to decrease canopy transpiration below a relative plant‐available soil water content of 0.6 and canopy photosynthesis and growth below 0.4. The shape of these responses were unaffected by pCa, supporting the simple assumption used in some models that they are independent of pCa. 相似文献
11.
Assessing elevated CO2 responses using meta-analysis 总被引:1,自引:1,他引:0
12.
Arbuscular mycorrhizae, ubiquitous mutualistic symbioses between plant roots and fungi in the order Glomales, are believed to be important controllers of plant responses to global change, in particular to elevated atmospheric CO2. In order to test if any effects on the symbiosis can persist after long-term treatment, we examined root colonization by arbuscular mycorrhizal (AM) and other fungi of several plant species from two grassland communities after continuous exposure to elevated atmospheric CO2 for six growing seasons in the field. For plant species from both a sandstone and a serpentine annual grassland there was evidence for changes in fungal root colonization, with changes occurring as a function of plant host species. We documented decreases in percentage nonmycorrhizal fungal root colonization in elevated CO2 for several plant species. Total AM root colonization (%) only increased significantly for one out of the five plant species in each grassland. However, when dividing AM fungal hyphae into two groups of hyphae (fine endophyte and coarse endophyte), we could document significant responses of AM fungi that were hidden when only total percentage colonization was measured. We also documented changes in elevated CO2 in the percentage of root colonized by both AM hyphal types simultaneously. Our results demonstrate that changes in fungal root colonization can occur after long-term CO2 enrichment, and that the level of resolution of the study of AM fungal responses may have to be increased to uncover significant changes to the CO2 treatment. This study is also one of the first to document compositional changes in the AM fungi colonizing roots of plants grown in elevated CO2. Although it is difficult to relate the structural data directly to functional changes, possible implications of the observed changes for plant communities are discussed. 相似文献
13.
Artificial turves composed of 7 chalk grassland species (Festuca ovina L.; Briza media L.; Bromopsis erecta (Hudson) Fourr.; Plantago media L.; Sanguisorba minor Scop.; Anthyllis vulneraria L. and Lotus corniculatus L.) were grown from seed and exposed to two seasons of elevated (600 μmol mol–1) and ambient (340 μmol mol–1) CO2 concentrations in free air CO2 enrichment (ETH-FACE, Zurich). The turves were clipped regularly to a height of 5 cm and assessed for above ground biomass production and relative abundance based on accumulated clipped dry biomass as well as by point quadrat recording. Below ground biomass production was assessed with root in-growth bags during the second season of growth. Increases in total biomass (> 30%) were noted in elevated CO2, but the differences did not become significant until the second season of growth. Individual species’ biomass varied in response to elevated CO2, with significant increases in biomass in elevated CO2 turves for both legume species, and no significant CO2 effect on S. minor or P. media. An initial positive CO2 effect on biomass of combined grass species was reversed by the end of the experiment with less biomass and a significantly smaller proportion of total biomass present in elevated CO2, which was attributed primarily to changes in proportion of F. ovina. Species relative abundance was significantly affected by elevated CO2 in the final 4 of the 6 clip events, with the legume species increasing in proportion at the expense of the other species, particularly the grasses. Root length and dry weight were both significantly increased in elevated CO2 (77% and 89%, respectively), and these increases were greater than increases in shoot biomass (36%) from the same period. Species responses to elevated CO2, within the model community, were not consistent with predictions made from data on individual species, leading to the conclusion that responses to elevated CO2, at the community level, and species within the community level, are the result of direct physiological effects and indirect competitive effects. These conclusions are discussed with respect to the ecological responses of natural communities, and the chalk grassland community in particular, to elevated CO2. 相似文献
14.
The density dependence of plant responses to elevated CO2 总被引:1,自引:0,他引:1
1 Stands of the annual Brassica kaber were grown at a range of six densities in both ambient and elevated CO2 environments, and measurements of shoot growth were made from seedling emergence through to reproduction.
2 Early in stand development (21 days following emergence), CO2 enhancement (β) for above-ground biomass was highly density-dependent, ranging from 1.41 at the lowest density (20 plants m−2) to 0.59 at the highest density (652 plants m−2).
3 As stands matured and total biomass exceeded a relatively low threshold level (<10.0 g m−2; c. 20% of final yield), the density-dependence of β disappeared. Above this shoot biomass threshold, β-values remained remarkably stable (β = 0.34) across a broad range of stand biomass, independent of a stand's initial density or age.
4 Average stand-level reproductive β-values at a final harvest were very similar to biomass values (β = 0.38) and, as with biomass values at later stages, showed no apparent density-dependence.
5 These results highlight the importance of considering density and the time-course of stand development simultaneously when assessing the potential for CO2 -induced growth enhancements in plants. 相似文献
2 Early in stand development (21 days following emergence), CO
3 As stands matured and total biomass exceeded a relatively low threshold level (<10.0 g m
4 Average stand-level reproductive β-values at a final harvest were very similar to biomass values (β = 0.38) and, as with biomass values at later stages, showed no apparent density-dependence.
5 These results highlight the importance of considering density and the time-course of stand development simultaneously when assessing the potential for CO
15.
An important question with respect to plant performance in future climatic scenarios is whether the offspring of mature trees that have experienced lifelong exposure to elevated [CO2] show altered physiological responses to elevated [CO2] compared with those originating from current ambient CO2 concentrations. To investigate this question, acorns were collected from two seed sources, denoted as ‘control’ and ‘spring’, from Quercus ilex mother trees grown at ambient (36 Pa) and at about twice ambient CO2 concentrations, respectively, close to a natural CO2 spring, Laiatico, central Italy. The seedlings were raised for 8 months under controlled conditions at ambient and elevated [CO2] in a reciprocal experimental design and were used for the determination of biomass, photosynthesis and foliar carbohydrate concentrations, as well as the accumulation of structural biomass and lignin during leaf maturation. Under ambient [CO2], biomass and foliar carbon acquisition in control progeny were not significantly different from spring progeny. However, under elevated [CO2], spring seedlings showed less CO2 acclimation than control seedlings but no significant differences in non‐structural carbohydrate concentrations and structural biomass per unit leaf dry mass. Developmental lignin accumulation in leaves was delayed under elevated [CO2] compared with ambient [CO2], but only in control progeny. Under elevated [CO2], whole‐plant biomass, leaf area and stem diameter were significantly increased in Quercus ilex seedlings from both seed sources but with a higher stimulation of above‐ground biomass in spring than in control seedlings and a higher stimulation of below‐ground biomass in control seedlings. These results indicate that life history and/or progeny may determine the species‐specific CO2 response and suggest that positive CO2 acclimation is possible. 相似文献
16.
17.
Stomatal acclimation over a subambient to elevated CO2 gradient in a C3 /C4 grassland 总被引:1,自引:1,他引:1
H. Maherali C. D. Reid H. W. Polley H. B. Johnson & R. B. Jackson 《Plant, cell & environment》2002,25(4):557-566
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gs–Ci curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gs–Ci response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past. 相似文献
18.
19.
Gerhard Kerstiens 《Physiologia plantarum》1998,102(3):472-480
Evidence from 10 studies comparing angiosperm trees and 5 studies comparing conifers of differing shade‐tolerance was analysed. The number of intraphyletic comparisons in which the more shade‐tolerant species showed the greater relative increase of biomass in elevated CO2 was significantly higher than would be expected by chance alone. It is suggested that more shade‐tolerant species are inherently better disposed, in terms of plant architecture and partitioning of biomass and nitrogen, to utilise resources (light, water, nutrients) that are potentially limiting in elevated CO2 and that these traits are responsible for the interaction between shade‐tolerance and CO2 concentration. Compared with less shade‐tolerant angiosperm trees, more shade‐tolerant angiosperm species generally have a lower leaf area ratio in ambient CO2 and show a smaller relative reduction in elevated CO2 . Furthermore, leaf nitrogen content is usually lower in more shade‐tolerant angiosperm species and tends to be more strongly reduced by elevated CO2 in those species. Within angiosperm trees, more shade‐tolerant species showed a stronger stimulation of net leaf photosynthetic rate in most experiments, but this trend was not significant. 相似文献