首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Cancer is caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The repair or inactivation of mutant genes may be effective in the treatment of cancer. Drugs that target oncogenes have shown to be effective in the treatment of some cancers. However, it is still unclear why the inactivation of a single cancer associated gene would ever result in the elimination of tumor cells. In experimental transgenic mouse models the consequences of oncogene inactivation depend upon the genetic and cellular context. In some cases, oncogene inactivation results in the elimination of all or almost all tumor cells through apoptosis or terminal differentiation. However, in other cases, oncogene inactivation results in the apparent loss of the neoplastic properties of tumor cells, that now appear and behave like normal cells, however, upon oncogene reactivation rapidly recover their neoplastic phenotype. These observations illustrate that oncogene inactivation can result in a state of tumor dormancy. Understanding when and how oncogene inactivation induces sustained tumor regression will be important towards the development of successful therapeutic strategies for cancer.  相似文献   

2.
Reversible tumorigenesis by MYC in hematopoietic lineages.   总被引:16,自引:0,他引:16  
The targeted repair of mutant protooncogenes or the inactivation of their gene products may be a specific and effective therapy for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the MYC protooncogene in hematopoietic cells. Sustained expression of the MYC transgene culminated in the formation of malignant T cell lymphomas and acute myleoid leukemias. The subsequent inactivation of the transgene caused regression of established tumors. Tumor regression was associated with rapid proliferative arrest, differentiation and apoptosis of tumor cells, and resumption of normal host hematopoiesis. We conclude that even though tumorigenesis is a multistep process, remediation of a single genetic lesion may be sufficient to reverse malignancy.  相似文献   

3.
The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis.  相似文献   

4.
Cell dormancy constitutes a limiting step of the metastatic process by preventing the proliferation of isolated cancer cells disseminated at distant sites from the primary tumor. The study of cancer cell dormancy is severely hampered by the lack of biological samples so that the mechanisms that regulate cell dormancy have not been extensively explored. In this work, we describe the rapid induction in vitro of a dormant state in prostate cancer cells by exposure to a slightly hypertonic growth medium. This quiescence is observed only when cells are seeded at low density and, once established, requires additional stimuli besides osmotic pressure to be reversed. Media conditioned by cells grown at high density can partially prevent or reverse dormancy, a phenomenon which can be reproduced with citric acid. In addition to this role of small metabolites, inactivation of the p53 and smad pathways also counters the entry into dormancy, whereas exposure to activin A induces it to some extent. Thus, this easily inducible dormancy reproduces several features associated with the dormancy of stem cells and cancer cells in vivo.  相似文献   

5.

Background

Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as “oncogene-addiction.” However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment.

Methodology/Principal Findings

To examine how the MYC and K-rasG12D oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-rasG12D to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-rasG12D- or MYC/K-rasG12D-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-rasG12D-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-rasG12D resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-rasG12D in maintenance of lung tumors, we found that the down-stream mediators of K-rasG12D signaling, Stat3 and Stat5, are dephosphorylated following conditional K-rasG12D but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-rasG12D. Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation.

Conclusions/Significance

Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic pathways is more likely to be effective in the treatment of lung cancers and lymphomas.  相似文献   

6.
7.
8.
9.
Chaperone-mediated autophagy (CMA), a selective form of protein lysosomal degradation, is maximally activated in stress situations to ensure maintenance of cellular homeostasis. CMA activity decreases with age and in several human chronic disorders, but in contrast, in most cancer cells, CMA is upregulated and required for tumor growth. However, the role of CMA in malignant transformation remains unknown. In this study, we demonstrate that CMA inhibition in fibroblasts augments the efficiency of MYC/c-Myc-driven cellular transformation. CMA blockage contributes to the increase of total and nuclear MYC, leading to enhancement of cell proliferation and colony formation. Impaired CMA functionality accentuates tumorigenesis-related metabolic changes observed upon MYC-transformation. Although not a direct CMA substrate, we have found that CMA regulates cellular MYC levels by controlling its proteasomal degradation. CMA promotes MYC ubiquitination and degradation by regulating the degradation of C330027C09Rik/KIAA1524/CIP2A (referred to hereafter as CIP2A), responsible for MYC stabilization. Ubiquitination and proteasomal degradation of MYC requires dephosphorylation at Ser62, and CIP2A inhibits the phosphatase responsible for this dephosphorylation. Failure to degrade CIP2A upon CMA blockage leads to increased levels of phosphorylated MYC (Ser62) and to stabilization of this oncogene. We demonstrate that this phosphorylation is essential for the CMA-mediated effect, since specific mutation of this site (Ser62 to Ala62) is enough to normalize MYC levels in CMA-incompetent cells. Altogether these data demonstrate that CMA mitigates MYC oncogenic activity by promoting its proteasomal degradation and reveal a novel tumor suppressive role for CMA in nontumorigenic cells.  相似文献   

10.
11.
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.  相似文献   

12.
13.
14.
Reversal of human cellular senescence: roles of the p53 and p16 pathways   总被引:34,自引:0,他引:34  
Telomere erosion and subsequent dysfunction limits the proliferation of normal human cells by a process termed replicative senescence. Replicative senescence is thought to suppress tumorigenesis by establishing an essentially irreversible growth arrest that requires activities of the p53 and pRB tumor suppressor proteins. We show that, depending on expression of the pRB regulator p16, replicative senescence is not necessarily irreversible. We used lentiviruses to express specific viral and cellular proteins in senescent human fibroblasts and mammary epithelial cells. Expression of telomerase did not reverse the senescence arrest. However, cells with low levels of p16 at senescence resumed robust growth upon p53 inactivation, and limited growth upon expression of oncogenic RAS. In contrast, cells with high levels of p16 at senescence failed to proliferate upon p53 inactivation or RAS expression, although they re-entered the cell cycle without growth after pRB inactivation. Our results indicate that the senescence response to telomere dysfunction is reversible and is maintained primarily by p53. However, p16 provides a dominant second barrier to the unlimited growth of human cells.  相似文献   

15.
16.
Despite progresses achieved in the therapy of tumors, the prognosis of patients is still limited by reccurence of residual tumor cells. Cancer cell dormancy plays a pivotal role in cancer relapse and drug resistance. In recent years, tumor cells undergoing EMT(epithelial-mesenchymal transition), CSCs(cancer stem cells) and CTCs(circulating tumor cells) are proved to share some common characteristics and show a cell cycle arrest phenotype. Thus, understanding the dormant stage of tumor cells could facilitate us in discovering ways to accelerate the development of tumor therapy and prevent its reccurence. In this review, we summarize the specific process of tumor cell dormancy induced by pharmacotherapy, and consider that dormancy is an initiative response rather than a passive defense to cytotoxicity. Besides, we probe into the mechanisms of tumor cell dormancy-mediated drug resistance, anticipating paving a way to target dormant tumor cells and result in better clinical outcomes.  相似文献   

17.
Although many tumors regress in response to neoadjuvant chemotherapy, residual tumor cells are detected in most cancer patients post-treatment. These residual tumor cells are thought to remain dormant for years before resuming growth, resulting in tumor recurrence. Considering that recurrent tumors are most often responsible for patient mortality, there exists an urgent need to study signaling pathways that drive tumor dormancy/recurrence. We have developed an in vitro model of tumor dormancy/recurrence. Short-term exposure of tumor cells (breast or prostate) to chemotherapy at clinically relevant doses enriches for a dormant tumor cell population. Several days after removing chemotherapy, dormant tumor cells regain proliferative ability and establish colonies, resembling tumor recurrence. Tumor cells from “recurrent” colonies exhibit increased chemotherapy resistance, similar to the therapy resistance of recurrent tumors in cancer patients. Previous studies using long-term chemotherapy selection models identified acquired mutations that drive tumor resistance. In contrast, our short term chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that can resume growth after drug removal. Studying unique signaling pathways in dormant tumor cells enriched by short-term chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.  相似文献   

18.
Activated Ras signaling can induce a permanent growth arrest in osteosarcoma cells. Here, we report that a senescence-like growth inhibition is also achieved in human carcinoma cells upon the transduction of H-Ras(V12). Ras-induced tumor senescence can be recapitulated by the transduction of activated, but not wild-type, MEK. The ability for H-Ras(V12) to suppress tumor cell growth is drastically compromised in cells that harbor endogenous activating ras mutations. Notably, growth inhibition of tumor cells containing ras mutations can be achieved through the introduction of activated MEK. Tumor senescence induced by Ras signaling can occur in the absence of p16 or Rb and is not interrupted by the inactivation of Rb, p107, or p130 via short hairpin RNA or the transduction with HPV16 E7. In contrast, inactivation of p21 via short hairpin RNA disrupts Ras-induced tumor senescence. In summary, this study uncovers a senescence-like program activated by Ras signaling to inhibit cancer cell growth. This program appears to be intact in cancer cells that do not harbor ras mutations. Moreover, cancer cells that carry ras mutations remain susceptible to tumor senescence induced by activated MEK. These novel findings can potentially lead to the development of innovative cancer intervention.  相似文献   

19.
《Trends in genetics : TIG》2023,39(5):358-380
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.  相似文献   

20.
The p53 tumor suppressor plays a key role in the natural protection against cancer. Activation of p53 by DNA-damaging agents can contribute to successful elimination of cancer cells via chemotherapy-induced apoptosis. The phosphatidylinositol-3 kinase (PI3K) pathway, triggered in normal cells upon exposure to growth factors, regulates a cascade of proliferation and survival signals. The PI3K pathway is abnormally active in many cancers, thus making it an attractive target for inactivation in an attempt to achieve better cancer therapy. We report here that exposure to LY294002, a potent PI3K inhibitor, aborts the activation of p53 by several drugs commonly used in cancer chemotherapy. Concomitantly, LY294002 attenuates p53-dependent, chemotherapy-induced apoptosis of cancer cells. These findings invoke an unexpected positive role for PI3K in p53 activation by anticancer agents, and suggest that the efficacy of PI3K inhibitors in cancer therapy may be greatly affected by the tumor p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号