首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As interaction of cellular prion protein (PrPc) and the infectious agent (PrPres) appears to be a crucial pathogenic step promoted by homology, variation in PrPc isoforms on bovine immune cells may explain the absence of infectivity in most bovine lymph organs. In this study, we examined PrPc expression in bovine lymph organs (tonsils and lymph nodes) and on isolated follicular dendritic cells (FDCs). We used a panel of different monoclonal antibodies (MoAbs) raised against different epitopes of prion protein. Two MoAbs recognise amino acids 79-92 (SAF 34 and SAF 32 Mo-Abs); the 6H4 antibody reacts with a specific peptide comprising the 144-152 amino acids, and the 12F10 MoAb recognises the sequence 142-160. After immunolabelling of frozen sections of lymph organs with 6H4 or 12F10 MoAbs, we detected cellular prion protein in germinal centres. However, using the SAF 34 or SAF 32 antibodies, PrPc was revealed outside the lymphoid tissues. No PrPc was observed in the germinal centres. Therefore, we adapted the method of FDC isolation, making it suitable for the study of PrPc expression on their surface. Using electron microscopy, the presence of PrPc on the surface of FDCs was demonstrated only with 6H4 MoAb. These results suggest that bovine follicular dendritic cells express a particular form of prion protein. Either the N-terminal part of PrPc is cleaved or the accessibility of the specific epitope (79-92) of SAF 34 MoAb is abolished by interaction with other molecules. This particular isoform of PrPc on bovine FDCs might be related to the apparent absence of infectivity in lymph organs in cattle affected by bovine spongiform encephalopathy.  相似文献   

2.
3.
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.  相似文献   

4.
In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs) network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres. We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 microm from a FDCs network. Using these estimates, a comparison was made between five uninfected mouse strains exhibiting the same Prnpa genotype but showing different incubation periods when inoculated with primary bovine spongiform encephalopathy (BSE)-infected brain. In prion disease, infectivity is generally detected in the spleen much earlier than in the brain, especially after peripheral inoculation. The way by which the infectious agent reaches the central nervous system is still unclear. From the five mouse strains, we obtained differences in the proportion of splenic FDCs networks with close interactions. Our work suggests that the percentage of splenic FDCs networks with at least one sympathetic neural fibre in close vicinity may influence the length of incubation period.  相似文献   

5.
We established that follicular dendritic cells (FDCs) are the site of abnormal prion protein (PrPCJD) accumulations in lymphoid tissues from mice infected with Creutzfeldt-Jakob disease. Evidence of positive FDC staining was observed in Creutzfeldt-Jakob disease-infected mice irrespective of the inoculation route, while no such staining was seen in the control mice. We also found that the severe combined immunodeficiency mouse trait is transmittable via the intracranial route but not via the intraperitoneal route. Mice with severe combined immunodeficiency did not have PrPCJD accumulation in FDCs.  相似文献   

6.
Association of B-1 B cells with follicular dendritic cells in spleen   总被引:2,自引:0,他引:2  
Although CD5(+) B-1 B cells have been recognized as an infrequent B cell subset in mice for many years, attempts to identify their histologic location in normal mouse spleen have proven difficult due to both their paucity and low level expression of CD5. In this study we have studied V(H)11/D(H)/J(H) gene-targeted mice, V(H)11t, that develop elevated numbers of CD5(+) V(H)11/V(k)9 B cells with an anti-phosphatidylcholine (anti-PtC) autoreactive specificity, allowing B-1 B cell detection by anti-PtC Id-specific Abs in spleen section staining. Using this approach we found that anti-PtC B-1 cells first appear within the white pulp in neonates, expand in association with follicular dendritic cells (FDC), and localize more centrally than other (non-B-1) IgD(high) follicular B cells in adults. Among neonatal B cells, CD5(+) B-1 cells in both normal and V(H)11t mouse spleen and peritoneal cavity express the highest levels of CXCR5, which is important for FDC development. Injection of purified spleen or peritoneal B-1 cells into RAG knockout mice resulted in B-1 cell follicle formation in spleen, inducing FDC development and plasma cell generation. These results indicate that B-1 B cells are the first B cells to express fully mature levels of CXCR5, thereby promoting the development of FDC.  相似文献   

7.
The ellipsoid-associated cell (EAC) is a blood-borne phagocytic cell, residing in the antigen trapping zone of the chicken spleen. Binding and endocytosis of βGalactosidase (βGal) are independent from the Fc and complement receptors, because sulfated polysaccharides, in a concentration manner, inhibit the bacterial antigen uptake. The βGal-positive cells migrate to the periarterial lymphatic sheath (PALS), the preexisting germinal centers (GC), and form clusters with B- and T-cells. βGal, E5G12 double positive cells on the surface of the ellipsoid and in the PALS, GC and clusters prove that the EACs carry the enzyme. The EAC and the follicular dendritic cell (FDC) express, 68.2 and E5G12 and, 74.3 and E5G12, antigens, respectively. During migration the cessation of 68.2 and expression of 74.3 indicate the differentiation of EAC to FDC. By day 14 the clusters had disappeared, and in several GC the presence of double positive cells (74.3 and βGal; E5G12 and βGal) showed that the clusters had developed to GC. The presence of βGal+ cells in the PALS, where interdigitating dendritic cells (IDC) cooperate with the T-cells, suggests that in the spleen alternate routes exist for the EAC differentiation to FDC: EAC to FDC: βGal-loaded cells in the preexisting GC; and EAC through IDC to FDC: βGal+ EAC in the PALS and clusters. The EAC-FDC axis works exclusively inside the spleen; therefore; this system may be operated in pneumococcus infection.This work was supported by OTKA Grant number: T-042558.  相似文献   

8.
Prion diseases are characterised by the accumulation of PrP(Sc), an abnormally folded isoform of the cellular prion protein (PrP(C)), in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc) accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrP(C) is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C) expression was specifically "switched on" or "off" only on FDC. We show that PrP(C)-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C)-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C) expression on FDC.  相似文献   

9.
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α(+)/CD11c(+) splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis.  相似文献   

10.
Dendritic cells (DC) are suspected to be involved in transmissible spongiform encephalopathies, including bovine spongiform encephalopathy (BSE). We detected the disease-specific, protease-resistant prion protein (PrP(bse)) in splenic DC purified by magnetic cell sorting 45 days after intraperitoneal inoculation of BSE prions in immunocompetent mice. We showed that bone marrow-derived DC (BMDC) from wild-type or PrP-null mice acquired both PrP(bse) and prion infectivity within 2 h of in vitro culture with a BSE inoculum. BMDC cleared PrP(bse) within 2 to 3 days of culture, while BMDC infectivity was only 10-fold diminished between days 1 and 6 of culture, suggesting that the infectious unit in BMDC is not removed at the same rate as PrP(bse) is removed from these cells. Bone marrow-derived plasmacytoid DC and bone marrow-derived macrophages (BMM) also acquired and degraded PrP(bse) when incubated with a BSE inoculum, with kinetics very similar to those of BMDC. PrP(bse) capture is probably specific to antigen-presenting cells since no uptake of PrP(bse) was observed when splenic B or T lymphocytes were incubated with a BSE inoculum in vitro. Lipopolysaccharide activation of BMDC or BMM prior to BSE infection resulted in an accelerated breakdown of PrP(bse). Injected by the intraperitoneal route, BMDC were not infectious for alymphoid recombination-activated gene 2(0)/common cytokine gamma chain-deficient mice, suggesting that these cells are not capable of directly propagating BSE infectivity to nerve endings.  相似文献   

11.
The distribution of immune complexes has been studied in mouse spleen stimulated to contain many germinal centers (GC's). Horseradish peroxidase (HRP)-anti-HRP complexes were used as an appropriately precise and sensitive model. We were primarily interested in the relative abilities of three cell types to interact with complexes: lymphocytes, macrophages, and follicular dendritic cells (FDC's). The latter are distinctive, nonendocytic, stellate cells located primarily at the transition of mantle and GC zones of 2 degrees lymphoid follicles (Chen, L. L., J. C. Adams, and R. M. Steinman, 1978, J. Cell Biol. 77:148). Binding of immune complexes to lymphocytes could not be visualized in situ. Macrophages avidly interiorized complexes into lysosomes, but did not retain them extracellularly. In contrast, FDC's could retain HRP-anti-HRP extracellularly under appropriate conditions, but did not endocytose them. Cytochemical reactivity accumulated progressively on FDC's 1--6 h after administration of complexes i.v., remained stable in amount and location for 1 day, and then was progressively lost over a 1- to 5-day period. Several variables in the association of complexes with macrophages and FDC's were pursued. Only 1 microgram of complexed HRP had to be administered to visualize binding to both cell types. Macrophages interiorized complexes formed in a wide range of HRP/anti-HRP ratios, while FDC's associated with complexes formed in HRP excess only. Quantitative studies with [125I]HRP-anti-HRP demonstrated that 20% of the splenic load of HRP associated with FDC's. Complexes formed with an F(ab')2 anti-HRP were distributed primarily in macrophages. When the levels of the third component of serum complement were depleted by prior treatment with cobra venom factor, uptake of complexes by macrophages was reduced some 50% whereas association with FDC's was abolished. The fact that antigen excess complexes are retained extracellularly strengthens the idea that they are immunogenic. Finally, the association of complexes with FDC's seems to retard the entry of antigen into the GC proper.  相似文献   

12.
The cellular prion protein (PrPC) is a host-encoded, GPI-anchored cell surface protein, expressed on a wide range of tissues including neuronal and lymphoreticular cells. PrPC may undergo posttranslational conversion, giving rise to scrapie PrP, the pathogenic conformer considered as responsible for prion diseases. Despite intensive studies, the normal function of PrPC is still enigmatic. Starting from microscope observations showing an accumulation of PrPC at the sites of contact between T cells and Ag-loaded dendritic cells (DC), we have studied the contribution of PrPC in alloantigen and peptide-MHC-driven T/DC interactions. Whereas the absence of PrPC on the DC results in a reduced allogeneic T cell response, its absence on the T cell partner has no apparent effect upon this response. Therefore, PrPC seems to fulfill different functions on the two cell partners forming the synapse. In contrast, PrPC mobilization by Ab reduces the stimulatory properties of DC and the proliferative potential of responding T cells. The contrasted consequences, regarding T cell function, between PrPC deletion and PrPC coating by Abs, suggests that the prion protein acts as a signaling molecule on T cells. Furthermore, our results show that the absence of PrPC has consequences in vivo also, upon the ability of APCs to stimulate proliferative T cell responses. Thus, independent of neurological considerations, some of the evolutionary constraints that may have contributed to the conservation of the Prnp gene in mammalians, could be of immunological origin.  相似文献   

13.
Follicular dendritic cells (FDCs) represent a unique cell population of antigen trapping cells restricted to follicles within the secondary lymphoid tissues. FDCs appear to be involved in the formation of primary follicles during the ontogeny of lymphoid tissue. We sought to determine the kinetics and tissue distribution of cells in the spleen of newborn mice expressing various differentiation antigens restricted to FDCs using immunohistochemistry with monoclonal antibodies (mAb) against FDCs and in vivo immune complex binding and retention. The earliest FDC-specific marker displayed was the antigenic determinant recognized by the FDC-M1 mAb, which was detectable by Day 3 prior to follicle formation on cells located around the peripheral part of the developing white pulp. The appearance of CD21/35 (complement receptor Type 2 and 1, CR1.2) was observed at the end of the first week, revealing a focal pattern in B-cell-rich areas. In addition, at that time there were some FDC-M1-positive cells in the nonfollicular part of the periarteriolar region. The administration of anti-horseradish peroxidase antibody followed by soluble antigen HRP into 7-day-old newborn mice resulted in the trapping and retention of immune complexes onto FDCs even in the absence of Fcgamma receptors. The appearance of another FDC-specific marker, FDC-M2, was observed during the second week after birth and was restricted on the cells located in the same area as CR1.2 cells. The Fcgamma receptor Type II appeared on FDCs after the second postnatal week. The above sequence of phenotypic maturation could also be observed in newborns after lethal irradiation at Day 3. This indicates that not only mature FDCs but also their precursors are highly radioresistant, and their phenotypic maturation follows a programmed path that requires only a small number of mature B cells.  相似文献   

14.
15.
The concept that circulating dendritic cells mediate neuroinvasion in transmissible spongiform encephalopathies received strong support from recent observations that prion protein is expressed in myeloid dendritic cells. We observed that prion protein fragment 106-126 is a chemoattractant for monocyte-derived immature but not mature dendritic cells. Signaling events in chemotaxis involved enzymes downstream of G(q) protein and were inhibited by blockade of sphingosine kinase, suggesting transactivation of sphingosine-1-phosphate-dependent cell motility by prion protein.  相似文献   

16.
Cr(VI), the highest oxidation state for chromium, is a carcinogenic and mutagenic agent. In vivo and in vitro Cr(VI) toxic effects are related to its intracellular fate. Once inside the cell it is reduced to stable Cr(III) by cysteine, glutathione and ascorbic acid. Additionally, as Cr(V) and/or Cr(IV) intermediates have been reported in Cr(VI) reactions with biological reductants, chromium damage is thought to originate from these chemical species. This work investigated the morphology of splenic cells after short-term exposure to Cr(VI). A dose of 30 mg of K2CrO4/kg body weight was administered to mice and the effects were studied 24 and 48 h after the injections. Histological results revealed a time-dependency effect of Cr(VI) on splenic cells. Changes included enlargement of the capsule and depletion of the red pulp cells, accompanied by an increase in macrophages, 24 h after injection. Partial restoration of red pulp was noted after 48 h.  相似文献   

17.
18.
Three distinct subtypes of dendritic cells (DC) are present in mouse spleen, separable as CD4(-)8alpha(-), CD4(+)8alpha(-), and CD4(-)8alpha(+) DC. We have tested whether these represent stages of development or activation within one DC lineage, or whether they represent separate DC lineages. All three DC subtypes appear relatively mature by many criteria, but all retain a capacity to phagocytose particulate material in vivo. Although further maturation or activation could be induced by bacterially derived stimuli, phagocytic capacity was retained, and no DC subtype was converted to the other. Continuous elimination of CD4(+)8(-) DC by Ab depletion had no effect on the levels of the other DC subtypes. Bromodeoxyuridine labeling experiments indicated that all three DC subtypes have a rapid turnover (half-life, 1.5-2.9 days) in the spleen, with none being the precursor of another. The three DC subtypes showed different kinetics of development from bone marrow precursors. The CD8alpha(+) spleen DC, apparently the most mature, displayed an extremely rapid turnover based on bromodeoxyuridine uptake and the fastest generation from bone marrow precursors. In conclusion, the three splenic DC subtypes behave as rapidly turning over products of three independent developmental streams.  相似文献   

19.
It has been known for some time that functional properties of dendritic cells (DC), and in particular their ability to process and present Ags to T cells, can be modulated by cytokine-induced maturation and by interactions with tumor cells. However, the molecular basis for these functional changes is unknown. We have investigated whether changes in expression of Ag-processing machinery (APM) components in DC are associated with alterations in their ability to present tumor-derived Ags to T cells. Using a panel of mAbs specific for individual APM components and a quantitative flow cytometry-based method, the level of APM components was measured in DC generated from peripheral blood monocytes of 12 normal donors and of 8 patients with cancer. Immature DC had significantly lower (p < 0.01) expression of MB1, LMP-7, LMP-10, TAP-1, and tapasin than mature DC. However, maturation in the presence of a cytokine mixture up-regulated expression of these components in DC obtained from normal donors and patients with cancer. Immature DC incubated with tumor cells had significantly lower (p < 0.001) expression of MB1, LMP-2, LMP-7, LMP-10, and endoplasmic reticulum p75 than controls. These changes were associated with a decreased ability of DC to present tumor-derived Ags to T cells, as measured in ELISPOT assays and with apoptosis of T cells in DC-T cell cultures. Thus, tumor cells have a significant suppressive effect on DC; however, ex vivo maturation of DC derived from patients with cancer in a polarizing cytokine mix restores normal expression of APM components and Ag-processing capabilities.  相似文献   

20.
A considerable body of data supports the model that the infectious agent (called a prion) which causes the transmissible spongiform encephalopathies is a replicating polypeptide devoid of nucleic acid. Prions are believed to propagate by changing the conformation of the normal cellular prion protein (PrPc) into an infectious isoform without altering the primary sequence. Proteins equivalent to the mature form of the wild-type mouse prion protein (residues 23-231) or with a mutation equivalent to that associated with Gerstmann-Straüssler-Scheinker disease (proline to leucine at codon 102 in human; 101 in mouse) were expressed in E. coli. The mutation did not alter the relative proteinase K susceptibility properties of the mouse prion proteins. The wild-type and mutant proteins were analyzed by circular dichroism under different pH and temperature conditions. The mutation was associated with a decrease in alpha-helical content, while the beta-sheet content of the two proteins was unchanged. This suggests the mutation, while altering the secondary structure of PrP, is not sufficient to induce proteinase K resistance and could therefore represent an intermediate isoform along the pathway toward prion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号