首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Three major groups of neurosecretory cells are described in the larval brain of Galleria mellonella at two different times during the last larval instar and in larval brains after 72 hr of culture in vitro. The medial group in vivo consists of four distinct neurosecretory cell types, based on characteristic size and morphology, while the posterior and lateral groups each contain a single distinct type of neurosecretory cell. Morphological differences between the same neurosecretory cells at the different times during the last instar are most apparent in the lateral L-1 cells and in the medial M-2 cells, where pleiomorphism is particularly evident in the size, density and accumulations of neurosecretory granules. The only neurosecretory cells in which apparent synthesis of neurosecretory granules is still observed after culture of the brain in vitro are the medial M-2 cells. The other neurosecretory cell types show no accumulation of neurosecretory granules nor new synthesis of neurosecretory material, but are similar to neurosecretory cells in the brain in vivo in all other respects. The morphology of the neurosecretory cells in the larval brain in vivo and in vitro is discussed in relation to their appearance at the light microscopic level and to a known neurohormonal function of the brain which is maintained during 72 hr in vitro.  相似文献   

2.
Summary The neurosecretory cells of the ventral ganglia in the adult dragonfly, Orthetrum chrysis, are classified into A, B, C1 and C2 cells. The neurosecretory material in the ventral ganglia is composed of PAS-positive material with 1-, 2-glycol groups and some proteins. The proteins rich in cystine or cysteine occur predominantly in the A cells, moderately in C cells and negligibly in B cells. Proteins containing arginine occur in A and B cells only, and those containing basic amino acids occur in C2 cells. The neurosecretory pathways and the neurohemal organs are also described.  相似文献   

3.
Neurosecretory cells of only one type (A, sub type A2) are seen in adult Melanoplus. Two groups of about 400 cells each are located dorsally in the pars intercerebralis medialis; four cells are located deep within the protocerebrum. We found no neurosecretory cells in other parts of the central or sympathetic nervous systems. In about 10% of the specimens, there was marked asymmetry in the location of the dorsal cell groups, with both of these groups and their axons located in one lobe of the protocerebrum. The nervi corporis cardiaci 1 cross-over in the corpus cardiacum, with the result that material produced by neurosecretory cells on one side of the brain is transported along axons that undergo two chiasmata to the corpus cardiacum of the same side. Stainable secretory material could be traced clearly from the cerebral cells to the corpus cardiacum, and even into the oesophageal nerves from the hypocerebral ganglion. However, stainable neurosecretory material is never present in the corpus allatum or along any of the nerves to this gland.  相似文献   

4.
The giant neurosecretory cells in the thoracic ganglion of the adult and juvenile crab, Potamon magnum magnum (Pretzman) were histochemically investigated. The secretion is mainly proteinaceous in nature, containing considerable amounts of acid mucosubstances, sulphate esters, lipids and a little carbohydrate but no glycogen. The detailed nature of proteinaceous neurosecretory material in the adult crab was further tested. It appears that the neurosecretory material of these cells contains moderate amounts of sulfhydryl groups and few of disulphide bonds. No trace of tyrosine could be observed. The neurosecretory granules were associated with considerable amounts of cytoplasmic RNA. In general, stronger reactions were obtained in summer and winter than in other seasons.  相似文献   

5.
Gross morphology, staining characteristics and mapping of the diversity of the neurosecretory cell types in the brain and subesophageal ganglion of the scorpion Heterometrus swammerdami are reported. Special neurosecretory cell groups whose product is stainable with orange-G, acid fuchsin and Heidenhain's hematoxylin are present in the brain. In many of the living isolated neurosecretory cells, the secretory material appears luminous when viewed with dark ground illumination and granular when observed with phase contrast microscope. In the subesophageal ganglion the metameric arrangement of neurosecretory cells is distinct. Neurosecretory product accumulating in specific regions of subesophageal ganglion, and its axonal transport into the dorsal nerves and their termination in cephalic blood vessels apparently representing a storage and release organ of neurosecretion is reported.  相似文献   

6.
The staining intensity (median neurosecretory cell index) of the median neurosecretory cells (MNC) in Musca domestica increased as oögenesis progressed from stages 2 to 10. The amount of neurosecretory material within the MNC was dependent upon the presence of ovaries with developing or mature follicles. Ovariectomized flies had a median neurosecretory index that was 50 per cent less than that of control flies with mature eggs. In addition, we found that ring gland removal decreased the staining frequency of three different neurosecretory cell groups; increased staining frequency in another; increased the amount of neurosecretory material within the MNC fibre tract; increased the cytoplasmic area of types A and A′ MNC. Furthermore, neither the juvenile hormone analogue nor the ring gland had a direct effect on the median neurosecretory cell index but did influence neurosecretory activity indirectly by activating the ovaries. We hypothesize that an ovarian hormone—the oöstatic hormone—regulates either the release from or synthesis of neurosecretory material within the MNC.  相似文献   

7.
The histochemistry of neurosecretory material in neurosecretory cells of Rivulo-gammarus syriacus has been investigated. Histochemically, these cells contain different neurosecretory substances. The material in A and C cells consists of mucopolysaccharides and lipids, that in B, B' and D cells there are a protein containing cystine S-S group, mucopolysaccharides and lipids, and that in E cell contains a weak protein with cystine S-S group, a substance showing beta metachromasia and lipids. The lipids are found in all the cells.  相似文献   

8.
The neurosecretory cells of Dysdercus similis have been described. "A", "B", "C" and "D" types of neurosecretory cells are present. The "A" type of cells of the pars-intercerebralis show cyclical secretion. When these cells show secretory activity during one to three days of emergence, they have scattered granules. The cells are seen packed with clumps of neurosecretory material when they are not secreting, and this is interpreted as a storage stage. The axons of these cells supply the corpora cardiaca and some neurosecretory material also reaches the corpus allatum. The release of this neurosecretory material can be correlated both with moulting in the young stages and later with reproduction in the adults.  相似文献   

9.
The neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. have been described on the basis of in situ preparations and histological sections employing the paraldehyde fuchsin (PF) and performic acid-victoria blue (PAVB) techniques. In the brain of N. viridula, there are two medial groups–each consisting of five neurosecretory cells which belong to A-type. The lateral neurosecretory cells are absent. The axons of the two groups of medial neurosecretory cells (MNC) compose the two bundles of neurosecretory pathways (NSP) that decussate in the anterodorsal part of the protocerebrum. The two pathways, after the cross-over, run deep into the protocerebrum and deutocerebrum and emerge as NCC-I from the tritocerebrum. The nervi corporis cardiaci-I (NCC-I) of each side which are heavily loaded with NSM terminate in the aorta wall. Thus, the neurosecretory material (NSM), elaborated in the medial neurosecretory cells of the brain, is stored in the aortic wall and nervi corporis cardiaci-I (NCC-I). The NCC-II are very short nerves that originate from the tritocerebrum and terminate in the corpora cardiaca (CC) of their side. Below the aorta, but dorsal to the oesophagus, lie two oval or spherical corpora cardiaca. A corpus allatum (CA) lies posterior to the corpora cardiaca (CC). The corpora cardiaca do not contain NSM; only the intrinsic secretion of their cells has been occasionally observed which stains orange or green with PF staining method. The corpus allatum sometimes exhibits PF positive granules of cerebral origin. A new connection between the corpus allatum and aorta has been recorded. The suboesophageal ganglion contains two neurosecretory cells of A-type which, in structure and staining behaviour, are similar to the medial neurosecretory cells of the brain. The course and termination of axons of suboesophageal ganglion neurosecretory cells, and the storage organ for the secretion of these cells have been reported. It is suggested that the aortic wall and NCC-I axons function as neurohaemal organ for cerebral and suboesophageal secretions.  相似文献   

10.
In the region of the distal optic chiasma of each optic lobe of Periplaneta americana, there is a group of about 120 monopolar neurosecretory cells. These cells do not stain with paraldehyde fuchsin but remain acidophilic after oxidation. They stain red or sometimes indigo with the azan technique. Histochemically, the neurosecretory material is positive for protein and the amino acids tryptophan and arginine but negative for 1, 2-glycols and strongly acidic groups. At the ultrastructural level, the cytoplasm of the cells contain many elementary neurosecretory granules 100 to 170 nm in dia. The cells also contain well-developed Golgi bodies and endoplasmic retieulum. The axons from these cells run toward the interior of the optic lobe. In this region, axons containing dense granules (mean diameter 70 nm) and synaptic vesicles synapse onto the axons from the neurosecretory cells. The neurosecretory axons then cross over to the anterior side of the optic lobe and run towards the brain. The function of these neurosecretory cells is unknown, but they may be involved with photoperiodically controlled activity rhythms.  相似文献   

11.
The neuroendocrine control of oocyte development in Poecilocera picta Fab. has been described. The secretory activity of the A type of neurosecretory cells has been correlated with ovarian development. In P. picta during the first four days after emergence the neurosecretory material is seen passing down the axons but the cells are largely devoid of neurosecretory material. When the oocytes are developed the A type cells are with stored neurosecretory material.
In P. picta the mature males do not appear to accelerate the process of maturation in females. The females which are reared without males or with castrated males also mature at the same time as the females which are reared with males. The corpus allatum also enlarges and decreases at the same period. The number of resorptive bodies is much more in the females which are reared with castrated males or without males. There appears to be some correlation in the secretion of the neurosecretory material, copulation, and the appearance of resorptive bodies. In P. picta the role of the mature male is only in copulation which very likely allows the cell to synthesize and secrete and release a large amount of neurosecretory material whose discharge in the haemolymph enables a successful development of the oocyte. Corpus allatum appears to be controlled by a precursor from the brain.
Cautery of the cerebral neurosecretory cells, allatectomy and sectioning of the nerves have been done to find out the role of neurosecretory material.  相似文献   

12.
Tamarelle  M  Vanhems  E 《Brain Cell Biology》1997,26(6):399-406
A new neurosecretory cell type of the locust pars intercerebralis, immunolabelled with an antiserum against a vertebrate peptide related to gastrin-cholecystokinin (CCK-8(s)), was characterized both in situ and in primary cell cultures. Semithin sections of pars intercerebralis were first immunostained in order to identify neurosecretory cells containing CCK-like material and then examined by electron microscopy. The neurosecretory cells containing CCK-like material were paraldehyde fuchsin negative and were unequivocally identified in ultrathin sections adjacent to immunostained semithin sections. They exhibited neurosecretory vesicles of variable electron density, ranging in diameter from 150 to 250 nm. Immunogold labelled ultrathin sections adjacent to unlabelled ultrathin sections allowed for the unambiguous localization of CCK-like immunoreactive material over the neurosecretory vesicles of the cells containing CCK-like material. Immunoreactivity towards CCK-8(s)-like peptide could also be detected in pars intercerebralis neurosecretory neurons grown in vitro. The CCK-like positive neurons showed a multipolar morphology with fine processes radiating from the cell body. The positive cells had the same ultrastructural characteristics as the in situ CCK-like neurons. The pattern of neurite outgrowth on reactive CCK-like neurosecretory cells in vitro and the neuroanatomical pathway of the CCK-like immunoreactive neurosecretory cells in situ could be correlated. On the basis of their number, size and localization in the locust pars intercerebralis, it is possible that the CCK-like neurosecretory cells correspond to neurosecretory cell type C, which has not, to date, been identified at the ultrastructural level.  相似文献   

13.
In each optic lobe and optic peduncle of two aquatic beetles viz. Dineutes indicus and Cybister rugulosus the neurosecretory cells are observed with the help of various histochemical techniques. These cells are arranged to form a discrete group. A group in the optic lobe of both species contains about 25 to 30 neurosecretory cells. On the basis of staining properties the neurosecretory cells are classified into A and B types. These cells stain with chrome haematoxylin-phloxine and paraldehyde fuchsin, but do not stain with azan. Histochemically, the neurosecretory material is positive for proteins and shows a negative reaction for 1,2-glycols. The cells show variations in RNA contents in correlation with the state of secretory activity. Axons of the neurosecretory cell group of the optic lobe are observed directed to the optic peduncle. The axonal tract from neurosecretory cells in the optic peduncle runs towards the lateral margin of the brain.  相似文献   

14.
G. Smith    E. Naylor 《Journal of Zoology》1972,166(3):313-321
The optic ganglia neurosecretory cells of male and female Carcinus maenas during intermoult are distinguishable into six types based on size, location, appearance and method of secretory material release from the perikaryon. Release occurs via the sinus gland and also, in one case, directly into blood capillaries among the neurosecretory cells themselves. The sinus gland consists of axonal extensions of the neurosecretory cells; no secretory granules are produced there and nuclei observed between the axonal endings are those of ill-defined glial cells.  相似文献   

15.
The two groups of neurosecretory cells producing neuropeptides related to somatostatin (SRIF) and methionine-enkephalin (met-enkephalin), previously high-lighted in the brain of adult migratory locusts, were detected by immunofluorescent techniques during the embryonic development of these insects. The earliest detection of these neurosecretory products occurred firstly in the terminal arborizations, then in the fibres, and finally in the perikarya. SRIF-like material is present in the corpora cardiaca already four days before hatching, i.e. at two-thirds of embryonic life, whereas immunoreactivity can be detected only after hatching in the perikarya located in the pars intercerebralis. The synthesis of met-enkephalin-like neuropeptide starts in the four cells of this system at least two days before hatching as shown by the immunofluorescence in the terminal arborizations along the tractus I to the corpora cardiaca. SRIF-like and met-enkephalin-like neurosecretory products are synthesized and carried to their release areas whilst the formation of brain structures and of the corpora cardiaca has not yet been completed.  相似文献   

16.
Primary cell cultures were prepared from a major neurosecretory center of the adult locust brain, the pars intercerebralis, in order to characterize neurosecretory cells growingin vitro. Individual pars intercerebralis could be removed free of surrounding tissue and dissociated by mechanical treatment. Mature neurosecretory neurons of different sizes regenerate new neurites during the initial three daysin vitro in serum-free medium. They show a tendency to sprout one primary neurite from which fine processes develop. By means of electron microscopy, we observed the integrity of the cellular organelles, indicating that cultured neurons are healthy, and we were able to distinguish three types of neurosecretory neurons on the basis of the ultrastructural aspects of the neurosecretory material. These three types have the same ultrastructural characteristics asin situ neuroparsin, ovary maturing parsin and locust insulin related peptide neurons. Immunogold labelling at the electron microscopic level, using the two available specific antibodies, anti-neuroparsin and anti-ovary maturing parsin, confirms the morphological characterization of neuroparsin and ovary maturing parsin cells. These results show for the first time that cultured locust neurosecretory neurons behave like thosein vivo, in terms of their ultrastructure and immunocytochemistry. Moreover, the presence of recently-formed neurosecretory material both in the Golgi zone of the perikaryon and in the neuronal processes indicates that cultured neurons have functional capacity since they are able to synthesizede novo and to transport the neurosecretory material along the neurite. Thus our well-characterized culture system provides a suitable invitro model to investigate the secretory mechanism of locust neurosecretory neurons.  相似文献   

17.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

18.
The neuroendocrine system of the homopteran, Idiocerus atkinsoni has been described, employing a neurosecretory stain. Two groups of medial neurosecretory cells (NSC) of one tinctorial type are present in the pars intercerebralis of the brain. Processes believed to be dendrites of the neurosecretory neurons lie superficially underneath the neurilemma and enclose neurosecretory material (NSM). Both the nervi corporis cardiaci, NCCI and NCCII, are branched. The branches of the former join to form an oesophageal nerve that runs on the oesophageal surface and terminates on the midgut, and those of the latter, innervate the oesophageal dilator muscles. Besides being present in the dendrite-like processes and NSC, the NSM is also seen in the NCCI, anterior part of the aorta and oesophageal nerve but not in the NCCII, corpora cardiaca (CC) and the corpus allatum (CA). It is suggested that the release of NSM into the circulation in this insect occurs through two main routes: the dendrites and the aorta. The evolution of the aorta as an exclusive neurohaemal organ in Hemiptera is discussed.  相似文献   

19.
Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed. Arch. Insect Biochem. Physiol. 37:269–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The hypothalamo-neurohypophysial neurosecretory system in Indian fresh-water goby, Glossogobius giuris (Ham.) has been described. The tractus preoptico-hypophyseus serves the function of a morphological and physiological connection between the hypothalamus and pituitary gland. In addition to main mass of the nucleus preopticus cells (cystine/cysteine bearing), a group of few cells in the hypothalamus has also been observed. These cells are situated posterior to the position of the nucleus preopricus and are CH Ph + ve and AF + ve. The neurosecretory material in the cells of nucleus preopticus is in the form of fine granules. The nucleus lateralis tuberis is absent in the fish under study. The disposition of neurosecretory material is heaviest along the fibres of the neurohypophysis in the region of pars intermedia with which it forms a profuse interdigitation. The fibres usually terminate over the blood vessels. The Herring bodies are noticeable at different levels in the neurohypophysis and pars-distalis. Besides the neurosecretory fibres, Herring bodies, non-stainableneurosecretory fibres and blood vessels, the pituicytes are also present in the neurohypophysis (SAKSENA 1974a, b). The intraaxonal flow of neurosecretory material, the vascularization of the nucleus preopticus and hypothalamo-hypophysial regulatory mechanism have been also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号