首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showing that him-14 functions during the pachytene stage, indicate that him-14 is not needed to establish pairing or synapsis and likely has a more direct role in crossover formation. him-14 encodes a germline-specific member of the MutS family of DNA mismatch repair (MMR) proteins. him-14 has no apparent role in MMR, but like its Saccharomyces cerevisiae ortholog MSH4, has a specialized role in promoting crossing over during meiosis. Despite this conservation, worms and yeast differ significantly in their reliance on this pathway: whereas worms use this pathway to generate most, if not all, crossovers, yeast still form 30-50% of their normal number of crossovers when this pathway is absent. This differential reliance may reflect differential stability of crossover-competent recombination intermediates, or alternatively, the presence of two different pathways for crossover formation in yeast, only one of which predominates during nematode meiosis. We discuss a model in which HIM-14 promotes crossing over by interfering with Holliday junction branch migration.  相似文献   

2.
Mutations in the him-5 gene in Caenorhabditis elegans strongly reduce the frequency of crossovers on the X chromosome, with lesser effects on the autosomes. him-5 mutants also show a change in crossover distribution on both the X and autosomes. These phenotypes are accompanied by a delayed entry into pachytene and premature desynapsis of the X chromosome. The nondisjunction, progression defects and desynapsis can be rescued by an exogenous source of double strand breaks (DSBs), indicating that the role of HIM-5 is to promote the formation of meiotic DSBs. Molecular cloning of the gene shows that the inferred HIM-5 product is a highly basic protein of 252 amino acids with no clear orthologs in other species, including other Caenorhabditis species. Although him-5 mutants are defective in segregation of the X chromosome, HIM-5 protein localizes preferentially to the autosomes. The mutant phenotypes and localization of him-5 are similar but not identical to the results seen with xnd-1, although unlike xnd-1, him-5 has no apparent effect on the acetylation of histone H2A on lysine 5 (H2AacK5). The localization of HIM-5 to the autosomes depends on the activities of both xnd-1 and him-17 allowing us to begin to establish pathways for the control of crossover distribution and frequency.  相似文献   

3.
Nabeshima K  Villeneuve AM  Hillers KJ 《Genetics》2004,168(3):1275-1292
Most sexually reproducing organisms depend on the regulated formation of crossovers, and the consequent chiasmata, to accomplish successful segregation of homologous chromosomes at the meiosis I division. A robust, chromosome-wide crossover control system limits chromosome pairs to one crossover in most meioses in the nematode Caenorhabditis elegans; this system has been proposed to rely on structural integrity of meiotic chromosome axes. Here, we test this hypothesis using a mutant, him-3(me80), that assembles reduced levels of meiosis-specific axis component HIM-3 along cohesin-containing chromosome axes. Whereas pairing, synapsis, and crossing over are eliminated when HIM-3 is absent, the him-3(me80) mutant supports assembly of synaptonemal complex protein SYP-1 along some paired chromosomes, resulting in partial competence for chiasma formation. We present both genetic and cytological evidence indicating that the him-3(me80) mutation leads to an increased incidence of meiotic products with two crossovers. These results indicate that limiting the amount of a major axis component results in a reduced capacity to communicate the presence of a (nascent) crossover and/or to discourage others in response.  相似文献   

4.
Gene conversions and crossing over were analyzed along 10 intervals in a 405-kb region comprising nearly all of the left arm of chromosome VII in Saccharomyces cerevisiae. Crossover interference was detected in all intervals as measured by a reduced number of nonparental ditypes. We have evaluated interference between crossovers in adjacent intervals by methods that retain the information contained in tetrads as opposed to single segregants. Interference was seen between intervals when the distance in the region adjacent to a crossover was < approximately 35 cM (90 kb). At the met13 locus, which exhibits approximately 9% gene conversions, those gene conversions accompanied by crossing over exerted interference in exchanges in an adjacent interval, whereas met13 gene conversions without an accompanying exchange did not show interference. The pattern of exchanges along this chromosome arm can be represented by a counting model in which there are three nonexchange events between adjacent exchanges; however, maximum-likelihood analysis suggests that approximately 8-12% of the crossovers on chromosome VII arise by a separate, noninterfering mechanism.  相似文献   

5.
Petter Portin 《Genetica》2010,138(3):333-342
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair. In a brood pattern analysis, it was observed that in mus309 mutant females, the frequency of single crossovers in the central cv–v interval of the X chromosome was reduced in young females but returned to the level of the wild type control as the females aged. In the proximal v–f interval, the frequency of single crossovers was increased during the entire experimental period. In particular, it was observed that the frequency of double crossovers, as well as the coefficient of coincidence first increased but then gradually decreased, finally reaching the level of the control flies, as the females aged. Map distances increased due to the mus309 mutation in both gene interval studies, but they did not change as the females aged, a result suggesting that the mus309 gene controls the distribution of DSBs to be repaired as crossovers instead of non-crossovers. The results suggest a mechanism for the centromere effect of crossing over in Drosophila, viz the fact the frequency of meiotic crossing over reduces with the age of the female, and that the reduction is more pronounced the closer the interval is to the proximal heterochromatin of the chromosome arm. According to the model suggested, the centromere effect is simply a matter of the balance between different pathways of the repair of the DSBs of DNA.  相似文献   

6.
Paul Szauter 《Genetics》1984,106(1):45-71
The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster . The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was examined in Drosophila melanogaster females homozygous for either normal sequence X chromosomes or any of a series of X chromosome inversions. Autosomally, these females were either (1) wild type, (2) homozygous for one of several recombination-defective meiotic mutations that attenuate the normal regional constraints on exchange or (3) heterozygous for the multiply inverted chromosome TM2. The results show that the centromere, the telomeres, the heterochromatin and the euchromatic-heterochromatic junction do not serve as elements that respond to genic determinants of the regional distribution of exchanges. Instead, the results suggest that there are several elements sparsely distributed in the X chromosome euchromatin. Together with the controlling system affected by recombination-defective meiotic mutations, these elements specify the regional distribution of exchanges. The results also demonstrate that the alteration in the distribution of crossovers caused by inversion heterozygosity (the interchromosomal effect) results from the response of a normal controlling system to an overall increase in the frequency of crossing over, rather than from a disruption of the system of regional constraints on exchange that is disrupted by meiotic mutations. The mechanisms by which regional constraints on exchange might be established are discussed, as is the possible evolutionary significance of this system.  相似文献   

7.
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.  相似文献   

8.
J Engebrecht  J Hirsch  G S Roeder 《Cell》1990,62(5):927-937
The yeast mer1 mutant produces inviable spores and is defective in both meiotic recombination and chromosome pairing. A gene called MER2 partially suppresses the mer1 phenotype when present in high copy number. Both gene conversion and chromosome pairing are completely restored in mer1 strains overexpressing MER2; however, reciprocal crossing over and spore viability are not restored. The data presented are consistent with a model in which chromosome pairing is a direct consequence of a homology search mediated through gene conversion. Analysis of random viable spores indicates that the crossovers that occur in mer1 strains overexpressing MER2 are more effective in ensuring meiosis I disjunction than those that occur in mer1 strains. One interpretation of this result is that only those crossovers that occur in the context of the synaptonemal complex lead to the establishment of functional chiasmata. The MER2 gene product is essential for meiosis.  相似文献   

9.
The genetics and cytology of a mutator factor in Drosophila melanogaster   总被引:15,自引:0,他引:15  
A Drosophila melanogaster mutator factor is described whose effects include the induction of unique chromosomal aberrations and male crossing over. Results of experiments to map the factor suggest that genetic transmission is somehow chromosomally associated but not localizable to the X, Y, second or third chromosome. There appears to be a good correlation between the distributions of male crossover exchange points and unique aberration breakpoints for the second chromosome but not for the third chromosome. The male crossovers, which occur more frequently in the centromeric region, occur in euchromatin rather than in the centric heterochromatin. The male crossovers tend to be rather precise reciprocal exchanges, since cytologically detectable deletions and duplications are only infrequently produced. It is suggested that the present mutator may be identical to earlier reported mutators of D. melanogaster.  相似文献   

10.
The effect was investigated of the hypomorphic DNA double-strand break repair, notably synthesis-dependent strand annealing, deficient mutation mus309 on the third chromosome of Drosophila melanogaster on intergenic and intragenic meiotic recombination in the X chromosome. The results showed that the mutation significantly increases the frequency of intergenic crossing over in two of three gene intervals of the X chromosome studied. Interestingly the increase was most prevalent in the tip of the X chromosome where crossovers normally are least frequent per physical map unit length. In particular crossing over interference was also affected, indicating that the effect of the mus309 mutation involves preconditions of crossing over but not the event of crossing over itself. On the other hand, the results also show that most probably the mutation does not have any effect on intragenic recombination, i.e. gene conversion. These results are fully consistent with the present molecular models of meiotic crossing over initiated by double-strand breaks of DNA followed by formation of a single-end-invasion intermediate, or D-loop, which is subsequently processed to generate either crossover or non-crossover products involving formation of a double Holliday junction. In particular the results suggest that the mus309 gene is involved in resolution of the D-loop, thereby affecting the choice between double-strand-break repair (DSBR) and synthesis-dependent strand annealing (SDSA) pathways of meiotic recombination.  相似文献   

11.
A. M. Villeneuve 《Genetics》1994,136(3):887-902
This study reports the characterization of a cis-acting locus on the Caenorhabditis elegans X chromosome that is crucial for promoting normal levels of crossing over specifically between the X homologs and for ensuring their proper disjunction at meiosis I. The function of this locus is disrupted by the mutation me8, which maps to the extreme left end of the X chromosome within the region previously implicated by studies of X;A translocations and X duplications to contain a meiotic pairing site. Hermaphrodites homozygous for a deletion of the locus (Df/Df) or heterozygous for a deletion and the me8 mutation (me8/Df) exhibit extremely high levels of X chromosome nondisjunction at the reductional division; this is correlated with a sharp decrease in crossing over between the X homologs as evidenced both by reductions in genetic map distances and by the presence of achiasmate chromosomes in cytological preparations of oocyte nuclei. Duplications of the wild-type region that are unlinked to the X chromosome cannot complement the recombination and disjunction defects in trans, indicating that this region must be present in cis to the X chromosome to ensure normal levels of crossing over and proper homolog disjunction. me8 homozygotes exhibit an altered distribution of crossovers along the X chromosome that suggests a defect in processivity along the X chromosome of an event that initiates at the chromosome end. Models are discussed in which the cis-acting locus deleted by the Dfs functions as a meiotic pairing center that recruits trans-acting factors onto the chromosomes to nucleate assembly of a crossover-competent complex between the X homologs. This pairing center might function in the process of homolog recognition, or in the initiation of homologous synapsis.  相似文献   

12.
Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or elevated levels of recombination occur at the end of the X chromosome hypothesized to contain the pairing region (the left end), with recombination levels decreasing in regions approaching the right end. Thus, both the number and the distribution of X chromosome exchange events are altered in these mutants. As a result, the genetic map of the X chromosome in the him mutants exhibits a clustering of genes due to reduced recombination, a feature characteristic of the genetic map of the autosomes in non-mutant animals. We hypothesize that these him genes are needed for some processive event that initiates near the left end of the X chromosome.  相似文献   

13.
Wide hybrids have been used in generating genetic maps of many plant species. In this study, genetic and physical mapping was performed on ph1b-induced recombinants of rye chromosome 2R in wheat (Triticum aestivum L.). All recombinants were single breakpoint translocations. Recombination 2RS-2BS was absent from the terminal and the pericentric regions and was distributed randomly along an intercalary segment covering approximately 65% of the arm's length. Such a distribution probably resulted from structural differences at the telomeres of 2RS and wheat 2BS arm that disrupted telomeric initiation of pairing. Recombination 2RL-2BL was confined to the terminal 25% of the arm's length. A genetic map of homoeologous recombination 2R-2B was generated using relative recombination frequencies and aligned with maps of chromosomes 2B and 2R based on homologous recombination. The alignment of the short arms showed a shift of homoeologous recombination toward the centromere. On the long arms, the distribution of homoeologous recombination was the same as that of homologous recombination in the distal halves of the maps, but the absence of multiple crossovers in homoeologous recombination eliminated the proximal half of the map. The results confirm that homoeologous recombination in wheat is based on single exchanges per arm, indicate that the distribution of these single homoeologous exchanges is similar to the distribution of the first (distal) crossovers in homologues, and suggest that successive crossovers in an arm generate specific portions of genetic maps. A difference in the distribution of recombination between the short and long arms indicates that the distal crossover localization in wheat is not dictated by a restricted distribution of DNA sequences capable of recombination but by the pattern of pairing initiation, and that can be affected by structural differences. Restriction of homoeologous recombination to single crossovers in the distal part of the genetic map complicates chromosome engineering efforts targeting genes in the proximal map regions.  相似文献   

14.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

15.
Meiosis in Asynaptic Yeast   总被引:47,自引:17,他引:30       下载免费PDF全文
B. Rockmill  G. S. Roeder 《Genetics》1990,126(3):563-574
The Saccharomyces cerevisiae red1 mutant fails to assemble synaptonemal complex during meiotic prophase. This mutant displays locus-specific reductions in interchromosomal gene conversion and a moderate reduction in crossing over. The occurrence of a significant amount of meiotically induced recombination in the red1 mutant indicates that the synaptonemal complex is not absolutely required for meiotic exchange. The RED1 gene product is required for intrachromosomal recombination in some assays but not others. Chromosomes that have undergone reciprocal exchange nevertheless nondisjoin in red1 mutants, indicating that crossovers are not sufficient for disjunction. Epistasis studies reveal that HOP1 is epistatic to RED1, and that RED1 acts in an independent pathway from MER1. A model for the function of the RED1 gene product in chromosome synapsis is discussed.  相似文献   

16.
Competing crossover pathways act during meiosis in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Argueso JL  Wanat J  Gemici Z  Alani E 《Genetics》2004,168(4):1805-1816
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe than that seen in msh4Delta and msh5Delta mutants. We analyzed the effects of msh5Delta, mlh1Delta, and mms4Delta single, double, and triple mutants on meiotic crossing over at four consecutive genetic intervals on chromosome XV using newly developed computer software. mlh1Delta mms4Delta double mutants displayed the largest decrease in crossing over (13- to 15-fold) of all mutant combinations, yet these strains displayed relatively high spore viability (42%). In contrast, msh5Delta mms4Delta and msh5Delta mms4Delta mlh1Delta mutants displayed smaller decreases in crossing over (4- to 6-fold); however, spore viability (18-19%) was lower in these strains than in mlh1Delta mms4Delta strains. These data suggest that meiotic crossing over can occur in yeast through three distinct crossover pathways. In one pathway, MUS81-MMS4 promotes interference-independent crossing over; in a second pathway, both MSH4-MSH5 and MLH1-MLH3 promote interference-dependent crossovers. A third pathway, which appears to be repressed by MSH4-MSH5, yields deleterious crossovers.  相似文献   

17.
P J Yeadon  D E Catcheside 《Genetics》1998,148(1):113-122
Multiple polymorphisms distinguish Emerson and Lindegren strains of Neurospora crassa within the histidine-3 gene and in its distal flank. Restriction site and sequence length polymorphism in a set of 14 PCR products covering this 6.9-kb region were used to identify the parental origin of DNA sequence information in prototrophic progeny of crosses heterozygous for auxotrophic mutations in his-3 and the silent sequence differences. Forty-one percent of conversion tracts are interrupted. Where the absence of rec-2+ permits activity of the recombination hotspot cog, conversion appears to originate at cog and conversion tracts are up to 5.9 kb long. The chromosome bearing cog(L), the dominant allele that confers a high frequency of recombination, is almost invariably the recipient of information. In progeny from crosses heterozygous rec-2/rec-2+, conversion tracts are much shorter, most are not initiated at cog and either chromosome seems equally likely to be converted. Although 32% of his-3 prototrophs have a crossover that may be associated with conversion, it is suggested that the apparent association between conversion and crossing over at this locus may be due to confounding of coincidental events rather than to a mechanistic relationship.  相似文献   

18.
The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable, fertile and shows the wild-type complement of six bivalents in most diakinetic nuclei, which is indicative of successful crossover recombination. However, brc-1 mutants show an abnormal increase in apoptosis and RAD-51 foci at pachytene that are abolished by loss of spo-11 function, suggesting a defect in meiosis rather than during premeiotic DNA replication. In genetic backgrounds in which chiasma formation is abrogated, such as him-14/MSH4 and syp-2, loss of brc-1 leads to chromosome fragmentation suggesting that brc-1 is dispensable for crossing over but essential for DSB repair through inter-sister recombination.  相似文献   

19.
Crossing over in the left arm of chromosome 2 (2L) was studied in successive broods of Drosophila melanogaster females carrying intact chromosomes (+/+), inversion Muller-5 in the X chromosome (M-5/+), and insertion of the Y-chromosome material into region 34A (Is(2L)/+). The regions net-dp, dp-b, b-pr and pr-cn were examined in 14 two-day-old broods of females +/+ and M-5/+ and in 10 broods of females Is(2L)/+. In all lines, the highest level of crossing over was in the first three broods (eggs laid during the first 6 days of oviposition) and the lowest level in the broods 7-8 (eggs laid at days 14-16). A high rate of crossing over in the first broods of females +/+ and M-5/+ was due to an increment of exchanges in the proximal euchromatin regions (b-pr and pr-cn) and to an increase in the number of tetrads with double exchanges. These changes are similar to a pattern of the interchromosomal effect on crossing over (IEC) in structurally normal chromosomes. In Is(2L)/+ females, a high level of crossing over was due to extensive exchanges in the interstitial regions net-dp and dp and an increase in the number of tetrads with single exchanges. These changes resembled the IEC in rearranged chromosomes (in this case, in chromosomes bearing an insertion). Thus, the age changes of crossing over are similar to the consequences of the presence or absence of IEC. Age changes in crossing over in a chromosome depended both on the local rearrangements in this chromosome (the local effect on crossing over, LEC) and on rearrangements in nonhomologous chromosomes (IEC). In the first broods, both LEC and IEC decreased with an increase in the level of crossing over. In subsequent broods, the reduced level of crossing over was accompanied by an increase in both LEC and IEC. This suggests that the mechanisms responsible for the age changes in crossing over and IEC may have common steps. The contact model of crossing over may explain the similarity between the age changes in crossing-over and IEC. It is suggested that both phenomena result from delayed determination of crossing over in a meiotic cell. This may occur due to the retarded formation of the local contacts in one of the homologous chromosome pairs or because a higher number of local contacts is required to trigger crossing over in a meiotic cell (of early age).  相似文献   

20.
M. M. Green 《Genetica》1963,33(1):154-164
Each of three tandem duplications,Bar, Beadex r49k andDp(I)z-w, when homozygous increases crossing over in their environs in excess of the genetic length of the duplication.Detailed crossing over studies withDp(I)z-w showed that in the duplication homozygotes interference is reduced and when combined with heterologous autosomal inversions, double crossovers occurring in less than 10 map units are readily recovered.These results are interpreted in terms of the concept of effective pairing and suggest that tandem duplications increase crossing over by increasing effective pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号