首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new rapid and sensitive method for characterizing lectin specificity using streptavidin-biotinylglycans as a tool is presented. This assay is analogous to enzyme immunoassay and takes advantage of the strong, irreversible adsorption of streptavidin to the wells of the chambers of titer plates. A series of streptavidin-biotinylglycans was first coated on a microtiter plate, and then one of six lectins, concanavalin A, wheat germ agglutinin, Phaseolus vulgaris (red kidney bean) erythro-agglutinin, Lens culinaris (lentil) agglutinin, Datura stramoniun agglutinin, or Sambucus nigra (elderberry bark) agglutinin coupled to horseradish peroxidase, was added. After incubation and thorough washing, only the lectin bound to a complementary glycan remained and could be detected and quantified by the peroxidase reaction. It was established that the lectins retained their oligosaccharide-binding specificities after coupling to the peroxidase, that the binding was inhibited by addition of the corresponding sugar inhibitors, and that the color intensity produced by the enzyme reaction is proportional to the amount of lectin-peroxidase bound to biotinylglycan complexed with streptavidin immobilized on the plate. As an example, it was found that the peroxidase-D. stramoniun agglutinin conjugate strongly bound biotinylglycans, GlcNAc3-Man5-R, GalGlcNAc3Man5-R, and GlcNAc3-4Man3-R (R = GlcNAc2-[6-(biotinamido)hexanoyl]-Asn). As little as 10 pmol/ml of lectin was detected. With the growing availability of biotinylglycans, the method should represent a reliable and simple procedure for screening lectin-oligosaccharide recognition qualitatively and quantitatively.  相似文献   

2.
Ascitic fluid haptoglobins 1-1, 2-1 and 2-2 and their tryptic glycopeptides were fractionated by affinity chromatography on Con A-Sepharose. Three peaks were obtained, corresponding to non-binding, weakly binding and strongly binding fractions. Concanavalin A-non-binding and concanavalin A-binding fractions of haptoglobin and of glycopeptide III 2-2 consisted of a series of polymers with increasing molecular mass, except for the non-binding fraction of glycopeptide III 1-1. After reduction there was no difference between the subunit composition of the glycopeptides and their concanavalin A fraction. Concanavalin A-non-binding fractions from haptoglobin 2-1 and glycopeptides III 1-1 and III 2-2 did not form an active complex with hemoglobin and, in crossed immunodiffusion, showed a reaction of partial identity with haptoglobin 2-1, glycopeptides III 1-1, III 2-2 and their concanavalin A-binding fractions. Concanavalin A-binding fractions of the above preparations exhibited with hemoglobin higher peroxidase activity than before their separation on Con A-Sepharose and immunodiffusion gave a reaction of identity among themselves and with unfractionated preparations. The concanavalin A-binding glycopeptide III is the biologically active part of the haptoglobin beta-chain.  相似文献   

3.
Mammalian endogenous carbohydrate-binding proteins (lectins) play fundamental roles in a variety of mechanisms of interactions both at the molecular and cellular levels. We have investigated the binding of one of them (human brain lectin) to soluble acrylamide copolymerized with derivatives of either lactose (O-beta-lactosyloxyallylallylaminoacrylamide copolymer) or D-mannose (D-alpha-mannosyloxyallylallylaminoacrylamide copolymer) in direct enzyme affinoassays, in an attempt to develop simple procedures for detection and estimation of its carbohydrate-binding activity. Biotinylated plant lectins were utilized as reference standards. Affinoassays employed the polymer dotted on nitrocellulose and the polymer coated on microtiter plates as well as detection of bound biotinylated lectin by streptavidin/horseradish peroxidase reagent. Both assays provided reproducible binding, inhibitable by specific sugars. The microtiter plate assay is well suited to sensitive detection of the negative endogenous lectin by competition with biotinylated brain lectin. We conclude that the use of derivatized acrylamide in dotting and microtiter plate assays may prove practical for detection of endogenous lectins and that such polymers may serve as model substances in the study of biological partners of these carbohydrate-binding proteins.  相似文献   

4.
A modification of a known quantitative solidphase microtiter plate lectin assay elaborated by Hatakeyama and coauthors developed with biotinylated lectins and ExtrAvidin--alkaline phosphatase conjugate was proposed. The modification was performed in order to use a broad spectra of lectin ligands, including glycopeptides, peptides, etc. The optimal concentrations of the reagents and time of the reagents incubation were selected. Being known from the literature Kdiss for Concanavalin A and monosaccharides: methyl-Man, Man, Glc and Gal were determined in a model experiments. The results were in agreement with the range of monosaccharides specificity for the Concanavalin A. The modification described is relatively simple and sensitive.  相似文献   

5.
The N-linked oligosaccharides synthesised by the murine plasmacytoma cell line NS-1 have been analysed by lectin affinity chromatography on columns of immobilised concanavalin A (Con A), Lens culinaris (lentil), Ricinus communis agglutinin (RCA) and leuko-phytohemagglutinin (L-PHA). The majority of complex N-glycans in this transformed cell line were branched structures with only a low level of biantennary complex chains detected. The analysis showed the major complex N-glycan fraction consisted of a minimum sialylated triantennary structure. [3H]Mannose-labelled transferrin receptor was isolated from NS-1 cells by immunoprecipitation followed by electroelution from SDS polyacrylamide gels. The isolated receptor was digested with Pronase and the 3H-labelled glycopeptides analysed by lectin affinity chromatography. Analysis by Con A-Sepharose indicated that approx. 50% of the labelled glycopeptides were branched complex N-glycans (unbound fraction) while the remainder were oligomannose structures (strongly bound). The presence of tri and/or tetraantennary structures in the Con A unbound fraction was further suggested by the interaction of 61% of the fraction with L-PHA. The lectin profiles obtained for the complex N-glycans of the transferrin receptor glycopeptides were similar to those for the total cellular glycopeptides of NS-1 cells. Reverse-phase HPLC analysis of tryptic glycopeptides of the isolated [3H]mannose-labelled transferrin receptor gave three 3H-labelled peaks, indicating that all three potential N-glycosylation sites on the receptor are utilised. The Con A-Sepharose profiles of the three fractions indicated the presence of branched complex N-glycans and high mannose chains at each site. The profiles of two of the tryptic glycopeptide fractions were very similar, while the third had a higher content of oligomannose oligosaccharides.  相似文献   

6.
Summary A solid-phase peptide binding assay, based on the mechanism of action of glycopeptide antibiotics, was developed for detecting this chemical class of metabolites. Utilizing a pentapeptide (l-alanyl-d-isoglutaminyl-l-lysyl-d-alanyl-d-alanine)-bovine serum albumin conjugate immobilized on the wall of microtiter wells, the binding of the vancomycin-alkaline phosphatase to the peptide could be demonstrated by subsequently monitoring the enzyme activity. The presence of glycopeptides in fermentation broths could be detected and quantified with a competitive binding assay. Peptides with ad-alanyl-d-alanine carboxyl terminus were necessary for the binding of these glycopeptides, thus confirming the mode of action of this class of antibiotics.  相似文献   

7.
Teguments from spargana of Spirometra mansonoides were disrupted and removed using 0.2% Triton ×-100. Tegumental fractions were obtained by differential centrifugation and the proteins and glycoproteins of this surface layer were partially characterized in 9 to 20% linear gradient sodium dodecyl sulfate-polyacrylamide slab gels. Electrophoretic analysis of the microtriches (brush border) and vesicular fractions revealed nine polypeptides that were common to these tegumental fractions. The polypeptide composition of the microtriches and vesicular fractions differed qualitatively and with respect to the relative concentrations of certain polypeptides. Glycopeptides of the microtriches and vesicular fractions were identified by the direct application of the following fluorescein isothiocyanate-conjugated lectins to slab gels: concanavalin A, wheat germ agglutinin, Ricinus communis agglutinin-120, soybean agglutinin, and Ulex europaeus agglutinin-1. The major polypeptides associated with the tegument were found to be glycopeptides. U. europaeus agglutinin-1 failed to label any tegumental glycopeptides. Based on the different sugar specificities of the lectins tested, the oligosaccharide chains of tegumental glycoproteins of S. mansonoides may contain the following carbohydrates: d-mannose, d-glucose, N-acetyl-d-glucosamine, N-acetylneuraminic acid, d-galactose, and N-acetyl-d-galactosamine.  相似文献   

8.
A solid-phase assay for the activity of CMPNeuAc:Gal beta 1-4GlcNAc-R alpha-2,6-sialyltransferase (2,6ST) has been developed. In the assay an acceptor glycoprotein is immobilized onto microtiter plate wells. The two glycoprotein acceptors used were asialofetuin (ASF), which contains oligosaccharides terminating in the sequence Gal beta 1-4GlcNAc-R, and a neoglycoprotein of bovine serum albumin containing covalently attached Gal beta 1-4GlcNAc-R units. Samples containing the donor CMPNeuAc and the 2,6ST were incubated with the immobilized acceptor to generate the product NeuAc alpha 2-6Gal beta 1-4GlcNAc-R. The product was detected by a biotin-streptavidin system using the biotinylated plant lectin Sambucus nigra agglutinin (SNA), which binds to sialic acid in alpha-2,6, but not in alpha-2,3, linkage. The biotinylated SNA bound to the product was then detected with streptavidin and biotinylated forms of either alkaline phosphatase or the recombinant bioluminescent protein aequorin. The assay was optimized with respect to the commercially available 2,6ST and shown to be dependent on the concentration of acceptor and CMPNeuAc and proportional to the 2,6ST activity in the range of 20 to 400 microU in a 1-h assay. The solid-phase assay also allows for the selective detection of 2,6ST activity in human and fetal bovine serum, where the activity was proportional in the range of 0.1 to 2 microliters of serum.  相似文献   

9.
A nonradioactive assay for type IV collagen degradation   总被引:1,自引:0,他引:1  
A sensitive assay for type IV collagen degradation using an avidin-biotin sandwich technique is described. Biotinylated type IV collagen is allowed to bind to an avidin-coated microtiter plate. The solution to be assayed is incubated with the biotinylated collagen bound to the avidin plate. Collagen degraded by the solution is released into the supernatant and transferred to a second plate coated with avidin. By addition of biotinylated horseradish peroxidase to this second plate, the amount of collagen degraded is determined. Our assay requires only 0.5 microgram of type IV collagen per microtiter plate and detects nanogram quantities of bacterial collagenase activity.  相似文献   

10.
Glycan microarray technology has become a successful tool for studying protein–carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core α1,3-fucose and core α1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.  相似文献   

11.
In this work O-linked glycopeptides bearing mucin core-1 type structures were enriched from human serum. Since about 70 % of the O-glycans in human serum bind to the plant lectin Jacalin, we tested a previously successful protocol that combined Jacalin affinity enrichment on the protein- and peptide-level with ERLIC chromatography as a further enrichment step in between, to eliminate the high background of unmodified peptides. In parallel, we developed a simpler and significantly faster new workflow that used two lectins sequentially: wheat germ agglutinin and then Jacalin. The first lectin provides general glycopeptide enrichment, while the second specifically enriches O-linked glycopeptides with Galβ1-3GalNAcα structures. Mass spectrometric analysis of enriched samples showed that the new sample preparation method is more selective and sensitive than the former. Altogether, 52 unique glycosylation sites in 20 proteins were identified in this study.  相似文献   

12.
Monosaccharides on the apical processes of the retinal pigment epithelium were examined using lectin-affinity cytochemical methods. Lectin receptor sugars were localized with lectin-horseradish peroxidase (HRP) and lectin-ferritin conjugates as well as with biotinylated lectins, avidin, and biotinylated HRP. In contrast, only wheat germ agglutinin (WGA) receptors were identified with biotinylated WGA followed by avidin-ferritin or free avidin and biotinylated ferritin. Labeling with avidin-ferritin subsequent to biotinylated lectin treatment was dependent upon the source and lot of the reagent. These findings are similar to those reported for the endothelium of bone marrow sinusoids (Pino RM: Am J Anat, 169:259, 1984). Since both the retinal pigment epithelial and bone marrow sinusoidal surfaces are highly anionic (negative), we investigated the possibility that the charge of the lectin reagents and cell surfaces might affect the localization of monosaccharides on cell surfaces. Analytical isoelectric focusing revealed that biotinylated ferritin and some avidin-ferritins are highly anionic, while the other lectin reagents have more cationic (positive) components. Based on this information, a less charged biotinylated ferritin marker was made that made it possible to localize biotinylated lectins bound to the cell surface.  相似文献   

13.
Site-specific structural characterization of the glycosylation of human lecithin:cholesterol acyltransferase (LCAT) was carried out using microbore reversed-phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC/ESIMS). A recently described mass spectrometric technique involving monitoring of carbohydrate-specific fragment ions during HPLC/ESIMS was employed to locate eight different groups of glycopeptides in a digest of a human LCAT protein preparation. In addition to the four expected N-linked glycopeptides of LCAT, a di-O-linked glycopeptide was detected, as well as three additional glycopeptides. Structural information on the oligosaccharides from all eight glycopeptides was obtained by sequential glycosidase digestion of the glycopeptides followed by HPLC/ESIMS. All four potential N-linked glycosylation sites (Asn20, Asn84, Asn272, and Asn384) of LCAT were determined to contain sialylated triantennary and/or biantennary complex structures. Two unanticipated O-linked glycosylation sites were identified at Thr407 and Ser409 of the LCAT O-linked glycopeptide, each of which contain sialylated galactose beta 1-->3N-acetylgalactosamine structures. The three additional glycopeptides were determined to be from a copurifying protein, apolipoprotein D, which contains potential N-linked glycosylation sites at Asn45 and Asn78. These glycopeptides were determined to bear sialylated triantennary oligosaccharides or fucosylated sialylated biantennary oligosaccharides. Previous studies of LCAT indicated that removal of the glycosylation site at Asn272 converts this protein to a phospholipase (Francone OL, Evangelista L, Fielding CJ, 1993, Biochim Biophys Acta 1166:301-304). Our results indicate that the carbohydrate structures themselves are not the source of this functional discrimination; rather, it must be mediated by the structural environment around Asn272.  相似文献   

14.
A microtiter plate spectrophotometric system has been used together with the Bradford, Ellman, and van Asperen assays to measure protein concentration (to 0.5 μg) and the activities of acetylcholinesterase (to 10?3 units) and carboxylesterase (to 30 μg β-napthol reaction product) in small samples such as high-performance liquid chromatographic eluate fractions. For 100-μl samples, at least 300 Ellman acetylcholinesterase or Bradford protein assays can be conducted and read in less than 30 min, and a like number of van Asperen nonspecific esterase assays (including 1-h incubation) run in less than 90 min. The eluate from a single 20-min high-performance liquid chromatographic run of a biological sample can be collected as up to 300 fractions directly into microtiter plate wells, and the three assays run on all fractions in less than 90 min.  相似文献   

15.
We have recently demonstrated that certain oligomannose and bisected hybrid type glycopeptides and bisected complex type oligosaccharides are bivalent for binding to concanavalin A and can precipitate the lectin [Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293; Bhattacharyya, L., Haraldsson, M., & Brewer, C.F. (1987) J. Biol. Chem. 262, 1294-1299]. The present results show that tri- and tetraantennary complex type oligosaccharides containing nonreducing terminal galactose residues, and a related triantennary glycopeptide, precipitate the D-galactose-specific lectins from Ricinus communis (agglutinin I) (RCA-I), Erythrina indica (EIL), Erythrina arborescens (EAL), and Glycine max (soybean) (SBA). Nonbisected and bisected biantennary complex type oligosaccharides can precipitate SBA, which is a tetrameric lectin, but not RCA-I, EIL, or EAL, which are dimeric lectins. The relative affinities of the oligosaccharides and glycopeptide were determined by hemagglutination inhibition measurements and their valencies by quantitative precipitin analyses. The equivalence points of the precipitin curves indicate that the tri- and tetraantennary oligosaccharides are tri- and tetravalent, respectively, for EIL, EAL, and SBA binding. However, the oligosaccharides are all trivalent for RCA-I binding due apparently to the larger size of the monomeric subunit of the lectin. The triantennary glycopeptide was also trivalent for RCA-I and EIL binding. Biantennary oligosaccharides with adequate chain lengths were found to be bivalent for binding to SBA; those with shorter chains did not precipitate the lectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

17.
1. The lectin from the broad bean (Vicia faba) was purified by affinity chromatography by using 3-O-methylglucosamine covalently attached through the amino group to CH-Sepharose (an omega-hexanoic acid derivative of agarose). Its composition and the nature of its subunits were compared with concanavalin A and the lectins from pea and lentil. 2. Unlike the other three lectins, broad-bean lectin is a glycoprotein; a glycopeptide containing glucosamine and mannose was isolated from a proteolytic digest. 3. The mol.wt. is about 47500; the glycoprotein consists of two apprently identical subunits, held together by non-covalent forces. Fragments of the subunits, similar to those found in concanavalin A and soya-bean agglutinin, were found in active preparations. 4. Broad-bean lectin was compared with concanavalin A and the lectins from pea and lentil in an investigation of the inhibition of their action by a number of monosaccharides, methyl ethers of monosaccharides, disaccharides and glycopeptides. The most striking differences concern 3-O-substituted monosaccharides, which are strong inhibitors of the action of broad-bean, pea and lentil lectins but not of the action of concanavalin A. There is, however, no strong inhibition of the action of these lectins by 3-Olinked disaccharides.  相似文献   

18.
A test to determine quantitatively the lectin binding sites in brush-border membranes has been developed. Highly purified bovine small intestinal brush-border membranes were prepared, and subsequently coated directly to the bottom of a microtiter plate. Soybean agglutinin conjugated with peroxidase was coupled to its binding sites in the brush-border membranes and the peroxidase activity was determined in a spectrophotometer. The number of soybean agglutinin binding sites in the brush-border membranes has been established by means of iterized computer fit analysis of the data, indicating values for maximal binding of 7.10(-7) M soybean agglutinin per mg of brush-border membrane protein and a dissociation constant of 1.5.10(-5) M.  相似文献   

19.
The epitope for HNK-1 and patient's monoclonal autoantibodies in demyelinating polyneuropathy associated with immunoglobulin M gammopathy is borne by different types of N-linked oligosaccharide structures in human P0 and myelin-associated glycoprotein (MAG). Fourteen glycopeptide fractions bearing different oligosaccharide structures were obtained from either MAG or P0 glycopeptides by serial lectin affinity chromatography on concanavalin A-Sepharose, Phaseolus vulgaris erythrophytohemagglutinin-agarose, Pisum sativum agglutinin-agarose, and Phaseolus vulgaris leucophytohemagglutinin-agarose. As shown by dot-TLC plate immunostaining, the same MAG and P0 glycopeptide fractions were recognized by HNK-1 and patient's immunoglobulin M, confirming that these antibodies display similar specificities. The antigenic carbohydrate was present in glycopeptide fractions that either interact with Pisum sativum agglutinin-agarose or were bound by Aleuria aurantia agglutinin-digoxigenin, indicating that these structures contained alpha(1-6)fucose residues. This study demonstrates that the L2/HNK-1 epitope is borne mainly or even exclusively by N-linked oligosaccharide structures alpha(1-6)fucosylated in the core.  相似文献   

20.
Recent advances in glycobiology have greatly stimulated carbohydrate research; however, improving techniques for identification and isolation of specific glycosylation sites in protein structure analysis remains a challenge. We report here a practical approach utilizing a membrane staining technique on Problott, a PVDF-type membrane, to screen glycoproteins and glycopeptides derived from enzymatic digests of glycoproteins. To improve the detection sensitivity, an amplified staining technique using biotinylated lectins, avidin, and biotinylated peroxidase was employed. In addition, we describe a micro-batch affinity binding procedure to isolate glycopeptides from complex glycoprotein enzymatic digests. These protocols allow us to start with a subnanomole quantity of glycoprotein and locate the glycosylation sites; isolate glycopeptides in a homogeneous form; and perform amino acid composition, amino acid sequence, and mass analyses on the isolated glycopeptides. The characterization of glycosylation site of a model glycoprotein, carboxypeptidase P, of which the structure is still largely unknown, has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号