首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 330 residue-long N-terminal domains (NTDs) of beta and beta' subunits of the Escherichia coli RNA polymerase (RPase) core enzyme were found to be significantly homologous to the entire length of its alpha subunit. The C-terminal domains (CTDs) of the RPase beta subunit and DNA primase (dnaG protein) were not only strongly homologous to each other but also considerably homologous to the RPase alpha, suggesting that an alpha subunit-like enzyme must have been commonly ancestral to core enzyme subunits and primase. The N-terminal region (NTR) of RPase alpha was also found to show significant homologies with NTRs of the E. coli EF-Tu and F1-ATPase alpha subunit, and a possible weak homology with ribosomal protein L3. A most important finding was that the C-terminal regions (CTRs) of DNA polymerase (DPase) I, T7 phage DPase and MS2 phage RNA replicase beta subunit are closely homologous with one another. These CTRs showed considerable homologies to RPase alpha NTD and RPase beta CTD. These conclusions are based on statistical evaluations of homologies in base and/or amino acid sequence alignments.  相似文献   

2.
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.  相似文献   

3.
A tailed bacteriophage, phi MR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1-150] and the lysozyme (aa 401-624) domains but not the linker domain (aa 151-400) caused efficient lysis of S. aureus. Immunoelectron microscopy localized gp61 to the tail tip of the phi MR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of phi MR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with phi MR11 was also lysed by both proteins. Staphylococcus aureus strains on which phi MR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   

4.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

5.
6.
7.
Structural gene mutants were cloned and exploited to identify the major catalytic domains of Bacillus subtilis DNA polymerase III (BsPolIII), a 162.4-kDa [1437 amino acids (aa)] polymerase: 3'-5' exonuclease (Exo) required for replicative DNA synthesis. Analysis of the sequence, mutagenicity, and catalytic behavior of natural and site-directed point mutants of BsPolIII unequivocally located the domain involved in exonuclease catalysis within a 155-aa residue segment displaying homology with the Exo domain of Escherichia coli DNA polymerase I. Sequence analysis of four structural gene mutations which specifically alter then enzyme's reactivity to the inhibitory dGTP analog, 6-(p-hydroxyphenylhydrazino)uracil, and the inhibitory arabinonucleotide, araCTP, defined a domain (Pol) involved in dNTP binding. The Pol domain was in the C-terminal fourth of the enzyme within a 98-aa segment spanning aa 1175-1273. The primary structure of the domain was unique, displaying no obvious conservation in any other DNA polymerase, including the distantly related PolIIIs of the Gram- organisms, E. coli and Salmonella typhimurium.  相似文献   

8.
Computer simulation of T3/T7 phage infection using lag times   总被引:2,自引:0,他引:2  
  相似文献   

9.
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.  相似文献   

10.
Chan SR  Chandran B 《Journal of virology》2000,74(23):10920-10929
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus (KSHV) ORF59 protein (PF-8) is a processivity factor for HHV-8 DNA polymerase (Pol-8) and is homologous to processivity factors expressed by other herpesviruses, such as herpes simplex virus type 1 UL42 and Epstein-Barr virus BMRF1. The interaction of UL42 and BMRF1 with their corresponding DNA polymerases is essential for viral DNA replication and the subsequent production of infectious virus. Using HHV-8-specific monoclonal antibody 11D1, we have previously identified the cDNA encoding PF-8 and showed that it is an early-late gene product localized to HHV-8-infected cell nuclei (S. R. Chan, C. Bloomer, and B. Chandran, Virology 240:118-126, 1998). Here, we have further characterized PF-8. This viral protein was phosphorylated both in vitro and in vivo. PF-8 bound double-stranded DNA (dsDNA) and single-stranded DNA independent of DNA sequence; however, the affinity for dsDNA was approximately fivefold higher. In coimmunoprecipitation reactions, PF-8 also interacted with Pol-8. In in vitro processivity assays with excess poly(dA):oligo(dT) as a template, PF-8 stimulated the production of elongated DNA products by Pol-8 in a dose-dependent manner. Functional domains of PF-8 were determined using PF-8 truncation mutants. The carboxyl-terminal 95 amino acids (aa) of PF-8 were dispensable for all three functions of PF-8: enhancing processivity of Pol-8, binding dsDNA, and binding Pol-8. Residues 10 to 27 and 279 to 301 were identified as regions critical for the processivity function of PF-8. Interestingly, aa 10 to 27 were also essential for binding Pol-8, whereas aa 1 to 62 and aa 279 to 301 were involved in binding dsDNA, suggesting that the processivity function of PF-8 is correlated with both the Pol-8-binding and the dsDNA-binding activities of PF-8.  相似文献   

11.
12.
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins, UmuD', RecA and ssDNA-binding protein (SSB), has an ability to bypass the lesion with high mutagenicity. This enables reinitiation and extension of DNA replication by DNA polymerase III (Pol III). We studied UV- and MMS-induced mutagenesis of lambdaO(am)8 phage in E. coli 594 sup+ host, unable to replicate the phage DNA, as a possible model for mutagenesis induced in nondividing cells (e.g. somatic cells). We show that in E. coli 594 sup+ cells UV- and MMS-induced mutagenesis of lambdaO(am)8 phage may occur. This mutagenic process requires both the UmuD' and C proteins, albeit a high level of UmuD' and low level of UmuC seem to be necessary and sufficient. We compared UV-induced mutagenesis of lambdaO(am)8 in nonpermissive (594 sup+) and permissive (C600 supE) conditions for phage DNA replication. It appeared that while the mutagenesis of lambdaO(am)8 in 594 sup+ requires the UmuD' and C proteins, which can not be replaced by other SOS-inducible protein(s), in C600 supE their functions may be replaced by other inducible protein(s), possibly DNA polymerase IV (DinB). Mutations induced under nonpermissive conditions for phage DNA replication are resistant to mismatch repair (MMR), while among those induced under permissive conditions, only about 40% are resistant.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain and by ATP binding, and, likely, hydrolysis at the NBDs. Exon 13 of the CFTR gene encodes amino acids (aa's) 590-830, which were originally ascribed to the R domain. In this study, CFTR channels were severed near likely NH(2)- or COOH-terminal boundaries of NBD1. CFTR channel activity, assayed using two-microelectrode voltage clamp and excised patch recordings, provided a sensitive measure of successful assembly of each pair of channel segments as the sever point was systematically shifted along the primary sequence. Substantial channel activity was taken as an indication that NBD1 was functionally intact. This approach revealed that the COOH terminus of NBD1 extends beyond aa 590 and lies between aa's 622 and 634, while the NH(2) terminus of NBD1 lies between aa's 432 and 449. To facilitate biochemical studies of the expressed proteins, a Flag epitope was added to the NH(2) termini of full length CFTR, and of CFTR segments truncated before the normal COOH terminus (aa 1480). The functionally identified NBD1 boundaries are supported by Western blotting, coimmunoprecipitation, and deglycosylation studies, which showed that an NH(2)-terminal segment representing aa's 3-622 (Flag3-622) or 3-633 (Flag3-633) could physically associate with a COOH-terminal fragment representing aa's 634-1480 (634-1480); however, the latter fragment was glycosylated to the mature form only in the presence of Flag3-633. Similarly, 433-1480 could physically associate with Flag3-432 and was glycosylated to the mature form; however, 449-1480 protein seemed unstable and could hardly be detected even when expressed with Flag3-432. In excised-patch recordings, all functional severed CFTR channels displayed the hallmark characteristics of CFTR, including the requirement of phosphorylation and exposure to MgATP for gating, ability to be locked open by pyrophosphate or AMP-PNP, small single channel conductances, and high apparent affinity of channel opening by MgATP. Our definitions of the boundaries of the NBD1 domain in CFTR are supported by comparison with the solved NBD structures of HisP and RbsA.  相似文献   

14.
A tailed bacteriophage, φMR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1–150] and the lysozyme (aa 401–624) domains but not the linker domain (aa 151–400) caused efficient lysis of S . aureus . Immunoelectron microscopy localized gp61 to the tail tip of the φMR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of φMR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with φMR11 was also lysed by both proteins. Staphylococcus aureus strains on which φMR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   

15.
测定和分析霍乱弧菌分型噬菌体VP3基因组序列,并为ElTor型霍乱弧菌两类菌株的分型方法原理提供研究基础。鸟枪法构建VP3噬菌体全基因组随机文库;测序拼接成最小重叠群,引物步移法填补缝隙序列,拼接后获得VP3全基因组序列。PCR随机扩增噬菌体DNA片段并酶切鉴定;预测可能存在的开放读码框(ORF);对VP3和相关噬菌体的DNA聚合酶基因作进化树分析,协助判定VP3的分类;对预测的部分启动子区利用报道基因进行活性分析。VP3全基因组为环状双链DNA,长度39504bp;酶切鉴定结果与序列一致。确定了49个ORF,注释了27个ORF的编码产物,其中有20个基因产物与T7样噬菌体同源,包括RNA聚合酶(RNAP)、参与DNA复制的蛋白、衣壳蛋白、尾管及尾丝蛋白、DNA包装蛋白等。DNA聚合酶(DNAP)进化树分析表明VP3与T7样噬菌体有同源性。将预测的10个启动子序列克隆到lacZ融合质粒pRS1274上,经检测均具有启动子活性。测定和分析VP3的基因组序列,基因组结构与进化树分析提示VP3属于T7噬菌体家族。  相似文献   

16.
In vivo studies of PBS2 phage replication in a temperature-sensitive Bacillus subtilis DNA polymerase III (Pol III) mutant and a temperature-resistant revertant of this mutant have suggested the possible involvement of Pol III in PBS2 DNA synthesis. Previous results with 6-(p-hydroxyphenylazo)-uracil (HPUra), a specific inhibitor of Pol III and DNA replication in uninfected cells, suggest that Pol III is not involved in phage DNA replication, due to its resistance to this drug. Experiments were designed to examine possible explanations for this apparent contradiction. First, assays of the host Pol III and the phage-induced DNA polymerase activities in extracts indicated that a labile Pol III did not result in a labile phage-induced enzyme, suggesting that this new polymerase is not a modified HPUra-resistant form of Pol III. Indeed the purified phage-induced enzyme was resistant to the active, reduced form of HPUra under all assay conditions tested. Since in vitro Pol III was capable of replicating the uracil-containing DNA found in this phage, the sensitivity of the purified enzyme to reduced HPUra was examined using phage DNA as template-primer and dUTP as substrate; these new substrates did not affect the sensitivity of the host enzyme to the drug.  相似文献   

17.
C J Michel  B Jacq  D G Arquès  T A Bickle 《Gene》1986,44(1):147-150
We have found that the amino acid (aa) sequence of the tip of phage T4 tail fibre (gene 37) shows more than 50% homology with the aa sequence predicted from an open reading frame (ORF314) in the phage lambda genome. ORF314 is near the 3' end of the late morphogenetic operon, beyond gene J coding for the lambda tail fibre. The homologous sequences are for the most part composed of repeated aa, the most remarkable of which is a Gly-X-His-Y-His motif where X and Y are small, uncharged aa, found six times in the T4 protein and seven times in the lambda ORF314 sequence.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号