首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH?) were prepared and dispersed in an HAuCl? solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility.  相似文献   

2.
This paper describes the combination of electrochemical immunosensor using gold nanoparticles (GNPs)/carbon nanotubes (CNTs) hybrids platform with horseradish peroxidase (HRP)-functionalized gold nanoparticle label for the sensitive detection of human IgG (HIgG) as a model protein. The GNPs/CNTs nanohybrids covered on the glass carbon electrode (GCE) constructed an effective antibody immobilization matrix and made the immobilized biomolecules hold high stability and bioactivity. Enhanced sensitivity was obtained by using bioconjugates featuring HRP labels and secondary antibodies (Ab2) linked to GNPs at high HRP/Ab2 molar ratio. The approach provided a linear response range between 0.125 and 80 ng/mL with a detection limit of 40 pg/mL. The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of HIgG in real samples, which provided a potential alternative tool for the detection of protein in clinical laboratory.  相似文献   

3.
An electrochemical immunosensor for the detection of human IgA deficiency in real human blood serum has been developed. The performance of the immunosensor presents a large but sensitive dynamic range that allows the determination of non-deficient IgA levels (>70 μg/mL) as well as of severe IgA deficiencies (0.5-5.0 μg/mL). The assay architecture involves the immobilisation of a coating antibody on an electrode surface using carboxylic-ended bipodal alkane-thiol self-assembled monolayers (SAMs). The long chain bipodal SAM presents intercalated poly(ethylenglycol) groups that confer the immunosensor the ability to retain its optimum performance in very complex matrices and serum with negligible non-specific adsorption phenomena. Amperometric optimisation of the assay resulted in limits of detection of 142 ng/mL in just 30 min total assay time. Real patients' serum samples were analysed using the developed electrochemical immunosensor demonstrating an excellent correlation in terms of sensitivity and reproducibility compared with standard enzyme linked immunosorbent assays (ELISA).  相似文献   

4.
The determination of antigliadin antibodies from human serum samples is of vital importance for the diagnosis of an autoimmune disease such as celiac disease. An electrochemical immunosensor that mimics traditional ELISA type architecture has been constructed for the detection of antigliadin antibodies with control over the orientation and packing of gliadin antigen molecules on the surface of gold electrodes. The orientation of the antigen on the surface has been achieved using a carboxylic-ended bipodal alkanethiol that is covalently linked with amino groups of the antigen protein. The bipodal thiol presents a long poly(ethyleneglycol)-modified chain that acts as an excellent non-specific adsorption barrier. The bipodal nature of the thiol ensured a good spacing and hence good diffusion properties of electroactive species through the self-assembled monolayer, which is vital for the efficiency of the constructed electrochemical immunosensor. The electrochemical immunosensor was characterized using surface plasmon resonance as well as electrochemical impedance spectroscopy. Amperometric evaluation of the sensor with polyclonal antigliadin antibodies showed stable and reproducible low limits of detection (46 ng/mL; % RSD = 8.2, n = 5). The behaviour and performance of the electrochemical immunosensor with more complex matrixes such as reference serum solutions and real patient samples was evaluated and compared with commercial ELISA kits demonstrating an excellent degree of correlation in thirty minutes total assay time; the electrochemical immunosensor not only delivers a positive or negative result, it allows the estimation of semi-quantitative antibody contents based on the comparison against clinical reference solutions.  相似文献   

5.
A sensitive electrochemical immunosensor with graphene-assisted signal amplification has been developed. In order to construct the base of the immunosensor, a novel hybrid architecture was initially fabricated by combining poly (diallyldimethylammonium chloride) functionalized graphene nanosheets (PDDA-G) and gold nanoparticles (AuNPs) via a simple sonication-induced assembly. The formed hybrid architecture provided an effective matrix for antibody immobilization with good stability and bioactivity. Subsequently, a smart, multilabel, and graphene-based nanoprobe that contains gold nanoparticles functionalized exfoliated graphene oxide and horseradish peroxidase-secondary antibodies was designed for constructing a novel sandwiched electrochemical immunosensor. Enhanced sensitivity was obtained by combining the advantages of high-binding capability and excellent electrical conductivity of hybrid architecture with the multilabel signal amplification. On the basis of the dual signal amplification strategy of graphene-based architecture and the multilabel, the immunosensor displayed excellent analytical performance for the detection of human IgG (HIgG) range from 0.1 to 200 ng/mL with a detection limit of 0.05 ng/mL at 3σ. Moreover, the proposed method showed good precision, acceptable stability and reproducibility, and could be used for the detection of HIgG in real samples. Therefore, the present strategy definitely paves a way for the wide application of graphene in clinical research.  相似文献   

6.
In this article, a novel sandwich-type electrochemical immunosensor based on the signal amplification strategy of diazotization-coupling concept for ultrasensitive detection of carcinoembryonic antigen (CEA) was reported. It operates through physisorption of monoclonal anti-CEA on 4-aminothiophenol (4Atp) functionalized gold electrode interface as the detection platform. Diazo-4Atp-coupled-thionine (Thi)-conjugated gold nanoparticles (GNPs) were prepared for immobilization of horseradish peroxidase (HRP) and secondary anti-CEA to form core-shell bioconjugates that were used as electrochemical signal amplification reagent. The sensitivity of the immunosensor was greatly amplified by a dual amplification: one is that a large number of thionine and HRP was introduced on the electrode surface through sandwich immunoreaction, the other is that HRP as enhancer could catalyze the oxidation reaction of thionine by H(2)O(2), which results in great enhancement of the reduction peak current. Thus, the bioconjugates-based assay provided an amplification approach for detecting CEA at trace levels and led to a detection limit as low as 0.7 pg/mL (at a three times signal-to-noise ratio) that is well-below the threshold value of 2.5 ng/mL for clinical diagnosis. The assay was evaluated for clinical serum samples with various CEA concentrations and received in excellent accordance with the results obtained from the referenced enzyme-linked immunosorbent assay (ELISA).  相似文献   

7.
A novel experimental methodology for studying a mediatorless and label-free immunosensor is proposed by immobilizing antibody on gold nanoparticle/L-cysteine coated electrode (nano-Au/L-cysteine electrode). Differential pulse voltammograms (DPV) resulting from the assembled immunosensor indicate that the immunosensor shows excellent electrochemical response to dopamine so that the electrochemical response is utilized for the signal generation step of the immunosensor. Therefore, by means of unenzymatic-labeling procedure combined with the amperometric detection using dopamine as substrate, the immunological reaction can be detected. After the immunosensor is incubated with h-IgG solution, the access of electrocatalytic behavior center of the immunosensor to dopamine is partly inhibited, which leads to a linear decrease in amperometric response of the immunosensor with h-IgG concentration over a range 0.82-90 ng mL(-1) by DPV.  相似文献   

8.
Electrochemical immunosensors have attracted great interest in the search for a selective, simple and reliable system for molecular recognition. Presently, electrochemical immunosensors have been widely studied for biomedical molecular's detection, but the regeneration of these immunosensors has restricted their wide application. To prepare a regeneration-free immunosensor, which may be more suitable for clinical determination, a repeatable immunoassay system was developed based on an electrochemical immunosensor with magnetic nanoparticles, biotin-avidin system (BAS) and Fab antibodies for the heart failure markers aminoterminal pro-brain natriuretic peptides (NT-proBNP). At the same time, a microfluidic system was combined into the proposed system, which enabled continuous determination. Using NT-proBNP as a model system, the proposed immunosensor exhibited rapid and sensitive amperometric response to NT-proBNP with good selectivity, stability, and a wide linear range (0.005-1.67 ng/mL and 1.67-4 ng/mL with a detection limit of 0.003 ng/mL under optimal conditions). Importantly, the proposed immunosensor was also suitable for the detection of other proteins and provided new opportunities for disease diagnosis.  相似文献   

9.
A new approach toward the development of advanced immunosensors based on chemically functionalized core-shell-shell magnetic nanocomposite particles, and the preparation, characteristics, and measurement of relevant properties of the immunosensor useful for the detection of alpha-1-fetoprotein (AFP) in clinical immunoassays. The core-shell NiFe2O4/3-aminopropyltriethoxysilance (APTES) (NiFe2O4@APTES) was initially prepared by covalent conjugation, then gold nanoparticles were adsorbed onto the surface of NiFe2O4@APTES, and then anti-AFP molecules were conjugated on the gold nanoparticles. The core-shell-shell nanocomposite particles not only had the properties of magnetic nanoparticles, but also provided a good biocompatibility for the immobilization of biomolecules. The core-shell-shell nanostructure present good magnetic properties to facilitate and modulate the way it was integrated into a carbon paste. The analytical performance of the immunosensor was investigated by using an electrochemical method. Under optimal conditions, the resulting composite presents good electrochemical response for the detection of AFP, and exhibits wide linear range from 0.9 to 110 ng/mL AFP with a detection limit of 0.5 ng/mL. Moreover, the proposed immunosensors were used to analyze AFP in human serum specimens. Analytical results, obtained for the clinical serum specimen by the developed immunosensor, were in accordance with those assayed by the standard ELISA. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

10.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

11.
A label-free electrochemical immunoassay for neuron-specific enolase (NSE), a kind of lung cancer marker, was developed in this work via novel electrochemical catalysis for signal amplification. The new amplified strategy was based on the electrochemical catalysis of nickel hexacyanoferrates nanoparticles (NiHCFNPs) in the presence of dopamine (DA). NiHCFNPs, which were assembled on the porous gold nanocrystals (AuNCs) modified glassy carbon electrode (GCE), could exhibit a distinct pair of redox peaks corresponding to anodic and cathodic reactions of hexacyanoferrate (II/III). Subsequently, gold nanoparticles functionalized graphene nanosheets (Au-Gra) were coated on the surface of NiHCFNPs/AuNCs film. Then an enhanced amount of neuron-specific enolase antibody (anti-NSE) could be loaded to obtain a sensitive immunosensor of anti-NSE/Au-Gra/NiHCFNPs/AuNCs/GCE due to the strong adsorption capacity and large specific surface area of Au-Gra. More importantly, the oxidation peak current can be enormously enhanced towards the electrocatalytic oxidation of DA based on NiHCFNPs, resulting in the further improvement of the immunosensor sensitivity. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.001-100 ng/mL with a detection limit of 0.3 pg/mL (S/N=3). Thus, the proposed immunosensor provides a rapid, simple, and sensitive immunoassay protocol for NSE detection, which may hold a promise for clinical diagnosis.  相似文献   

12.
A facile and feasible magneto-controlled immunosensing platform was designed for sensitive electrochemical immunoassay of brevetoxin B (BTX-2) in seafood by using guanine-assembled graphene nanoribbons (GGNRs) as molecular tags on a home-made magnetic carbon paste electrode. Initially, monoclonal mouse anti-BTX-2 antibodies were covalently immobilized on the surface of magnetic beads, which were used as the immunosensing probes for the capture of BTX-2. The recognition elements were prepared by chemical modification of bovine serum albumin-BTX-2 conjugates (BTX-2-BSA) with the GGNRs. Based on a competitive-type immunoassay format, the formed magnetic immunocomplex was integrated on the electrode with an external magnet, followed by determination in pH 6.5 phosphate-buffered solution containing 2μM Ru(bpy)(3)Cl(2). Under optimal conditions, the electrochemical signals decreased with the increasing BTX-2 concentrations in the sample. The dynamic concentration range spanned from 1.0pgmL(-1) to 10ngmL(-1) with a detection limit of 1.0pgmL(-1) BTX-2. Inter- and intra-batch assay precisions were substantially improved by resorting to the GGNR manifold. The method featured unbiased identification of negative (blank) and positive samples. No significant differences at the 95% confidence level were encountered in the analysis of 12 spiked samples including S. constricta, M. senhousia and T. granosa between the electrochemical immunoassay and commercially available enzyme-linked immunosorbent assay (ELISA) for determination of BTX-2.  相似文献   

13.
In this paper, a novel electrochemical immunosensor for the determination of casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes (P-L-Arg/MWCNTs) composite film was proposed. The P-L-Arg/MWCNTs composite film was used to modify glassy carbon electrode (GCE) to fabricate P-L-Arg/MWCNTs/GCE through electropolymerization of L-Arginine on MWCNTs/GCE. Gold nanoparticles were adsorbed on the modified electrode to immobilize the casein antibody and to construct the immunosensor. The stepwise assembly process of the immunosensor was characterized by cyclic voltammetry and differential pulse voltammetry. Results demonstrated that the peak currents of [Fe(CN)(6)](3-/4-) redox pair decreased due to the formation of antibody-antigen complex on the modified electrode. The optimization of the adsorption time of gold nanoparticles, the pH of supporting electrolyte and the incubation time were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing casein concentrations in the range from 1 × 10(-7) to 1 × 10(-5) g mL(-1) with a linear coefficiency of 0.993. This electrochemical immunoassay has a low detection limit of 5 × 10(-8) g mL(-1) and was successfully applied to the determination of casein in cheese samples.  相似文献   

14.
In this work, uniform and stable multi-walled carbon nanotubes (MWCT) and chemically reduced graphene (GR) composite electrode interface was fabricated by using layer-by-layer assembly method. The performances of these GR-MWCT assembled electrode interfaces were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It was demonstrated that the assembled composite film significantly improved the interfacial electron transfer rate compared with that of GR or MWCT modified electrode. Based on the GR-MWCT assembled interface, a sandwich-type electrochemical immunosensor was constructed using human IgG as a model target. In this assay, human IgG was fixed as the target antigen, the HRP-conjugated IgG as the probing antibody and hydroquinone as the electron mediator. The detection limit of the immunosensor was 0.2 ng mL(-1) (signal-to-noise ratio of 3). A good linear relationship between the current signals and the concentrations of Human IgG was achieved from 1 ng mL(-1) to 500 ng mL(-1). Moreover, this electrochemical immunosensor exhibited excellent selectivity, stability and reproducibility, and can be used to accurately detect IgG concentration in human serum samples. The results suggest that the electrochemical immunosensor based on GR-MWCT assembled composite will be promising in the point-of-care diagnostics application of clinical screening of multiple diseases.  相似文献   

15.
This paper reports a novel electrochemical immunosensor for the sensitive detection of staphylococcal enterotoxin A (SEA) based on self-assembly monolayer (SAM) and protein A immobilization on gold electrode. Three different methods of protein A immobilization were tested: physical adsorption, cross-linking using glutaraldehyde and covalent binding after activation with N-hydroxysuccinimide (NHS)/N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) on cysteamine-modified gold electrode. The EDC/NHS method for protein A immobilization was selected to lead development of the biosensor. The coating steps of the surface modification were characterized by cyclic voltammetry and the biosensor response by chronoamperometry. The advantages of the immunosensor were exposed in its high sensitivity and specificity. The proposed amperometric immunosensor was successfully used for determination of SEA in contaminated and non-contaminated cheese samples with excellent responses.  相似文献   

16.
In this work, the direct electrochemical determination of poly-histidine tagged proteins using immunosensor based on anti-His (C-term) antibody immobilized on gold electrodes modified with 1,6-hexanedithiol, gold colloid particles or gold nanorods is described. The recombinant histidine-tagged silk proteinase inhibitor protein (rSPI2-His(6)) expressed in Pichia system selected as antigen for this immonosensor. An electrochemical impedance spectroscopy was used as label free detection technique for immune conjugation. The gold nanorods modified electrode layer showed better analytical response than gold nano particles. The linear calibration range was observed between 10pg/ml and 1ng/ml with limit of detection 5pg/ml (S/N=3). Up to four successive assay cycles with retentive sensitivity were achieved for the immunosensors regenerated with 0.2M glycine-HCl buffer, pH 2.8. The performance of this immnosensor were compared with immuoblotting techniques.  相似文献   

17.
A new amplification strategy of electrochemical signaling from antigen-antibody interactions was proposed via back-filling immobilization of horseradish peroxidase (HRP), immunoglobulin G antibodies (anti-IgG) and gold nanoparticles onto a three-dimensional sol-gel (3DSG)-functionalized biorecognition interface. The 3DSG sol-gel network was employed not only as a building block for the surface modification but also as a matrix for ligand functionalization. The signal-amplification was based on the bioelectrocatalytic reaction of the back-filling immobilization of HRP to H(2)O(2). With the non-competitive format, the formation of the antigen-antibody complex by a simple one-step immunoreaction between the immobilized anti-IgG and IgG in sample solution inhibited partly the active center of HRP, and decreased the immobilized HRP towards H(2)O(2) reduction. Under optimal conditions, the proposed immunosensor exhibited a good electrochemical behavior to IgG in a dynamic range of 1.12-162 ng/mL with a detection limit of 0.56 ng/mL (at 3delta). Moreover, the precision, reproducibility and stability of the as-prepared immunosensor were acceptable. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of biomarkers and its metastasis.  相似文献   

18.
An immunosensor with rapid and ultrasensitive response for vascular endothelial growth factor (VEGF) has been built up with 4-aminothiophenol (4-ATP) onto the gold surfaces. Quantitative analysis of VEGF was performed by recording the impedance changing of the gold electrode surface by binding of VEGF. The human vascular endothelial growth factor receptor 1 (VEGF-R1, Flt-1) was used as a biorecognition element for the first time in the literature. VEGF-R1 was covalently immobilized via 4-ATP self-assembled monolayer formed on gold thin film covered surface. Construction of the biosensor was carefully characterised by the techniques such as electrochemistry and electrochemical impedance spectroscopy. In order to characterize impedance data, Kramers–Kronig transform was performed on the experimental impedance data. The limit of detection of the immunosensor for qualitative detection was 100 pg/mL while the LOD for quantitative detection could down to 100 pg/mL by using the VEGF-R1 based biosensor. Finally, artificial serum samples spiked with VEGF was analyzed by the proposed immunosensor to investigate useful of the biosensor for early biomarker diagnosis.  相似文献   

19.
Yu H  Yan F  Dai Z  Ju H 《Analytical biochemistry》2004,331(1):98-105
A screen-printed three-electrode system is fabricated to prepare a novel disposable screen-printed immunosensor for rapid determination of alpha-1-fetoprotein (AFP) in human serum. The immunosensor is prepared by entrapping horseradish peroxidase (HRP)-labeled AFP antibody in chitosan membrane to modify the screen-printed carbon electrode. The membrane is characterized with scanning electron microscope and electrochemical methods. After the immunosensor is incubated with AFP at 30 degrees C for 35 min, the access of the active center of HRP catalyzing the oxidation reaction of thionine by H(2)O(2) is partly inhibited. In presence of 1.2 mM thionine and 6 mM H(2)O(2), the electrocatalytic current decreases linearly in two concentration ranges of AFP from 0 to 20 and from 20 to 150 ng/mL with a detection limit of 0.74 ng/mL. The immunosensor shows an acceptable accuracy compared with those obtained from immunoradiometric assays. The interassay coefficients of variation are 6.6 and 4.2% at 10 and 100 ng/mL, respectively. The storage stability is acceptable in pH 7.0 phosphate buffer solution at 4 degrees C for more than 10 days. The proposed method can detect the AFP through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

20.
Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号