首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have previously reported the isolation, characterization, and gene sequence of a new thermostable acid protease, thermopsin, from Sulfolobus acidocaldarius, a thermophilic archaebacterium. Thermopsin is similar to aspartic protease pepsin in specificity and pH dependence. However, it optimally catalyzes in the temperature range of 85 to 90 degrees C and it is not structurally related to pepsin. The current report describes the synthesis of recombinant thermopsin in E. coli and in insect cells. Several recombinant thermopsin fusion proteins were expressed as "inclusion bodies" in the cytosol of E. coli. Active thermopsin preparations were obtained by refolding from urea solutions. Recombinant thermopsin was also expressed in insect cells using a baculovirus expression system. The thermostability of recombinant thermopsin is similar to that of the native enzyme.  相似文献   

2.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

3.
The function of aspartic acid residue 101 in the active site of Escherichia coli alkaline phosphatase was investigated by site-specific mutagenesis. A mutant version of alkaline phosphatase was constructed with alanine in place of aspartic acid at position 101. When kinetic measurements are carried out in the presence of a phosphate acceptor, 1.0 M Tris, pH 8.0, both the kcat and the Km for the mutant enzyme increase by approximately 2-fold, resulting in almost no change in the kcat/Km ratio. Under conditions of no external phosphate acceptor and pH 8.0, both the kcat and the Km for the mutant enzyme decrease by approximately 2-fold, again resulting in almost no change in the kcat/Km ratio. The kcat for the hydrolysis of 4-methyl-umbelliferyl phosphate and p-nitrophenyl phosphate are nearly identical for both the wild-type and mutant enzymes, as is the Ki for inorganic phosphate. The replacement of aspartic acid 101 by alanine does have a significant effect on the activity of the enzyme as a function of pH, especially in the presence of a phosphate acceptor. At pH 9.4 the mutant enzyme exhibits 3-fold higher activity than the wild-type. The mutant enzyme also exhibits a substantial decrease in thermal stability: it is half inactivated by treatment at 49 degrees C for 15 min compared to 71 degrees C for the wild-type enzyme. The data reported here suggest that this amino acid substitution alters the rates of steps after the formation of the phospho-enzyme intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   

5.
The kinetic characteristics (kcat, Km, and their ratio) for oxidation of iodide (I-) at 25 degrees C in 0.2 M acetate buffer, pH 5.2, and tetramethylbenzidine (TMB) at 20 degrees C in 0.05 M phosphate buffer, pH 6.0, with 10% DMF catalyzed by human thyroid peroxidase (HTP) and horseradish peroxidase (HRP) were determined. The catalytic activity of HRP in I- oxidation was about 20-fold higher than that of HTP. The kcat/Km ratio reflecting HTP efficiency was 35-fold higher in TMB oxidation than that in I- oxidation. Propyl gallate (PG) effectively inhibited all four peroxidase processes and its effects were characterized in terms of inhibition constants Ki and the inhibitor stoichiometric coefficient f. For both peroxidases, inhibition of I- oxidation by PG was characterized by mixed-type inhibition; Ki for HTP was 0.93 microM at 25 degrees C. However, in the case of TMB oxidation the mixed-type inhibition by PG was observed only with HTP (Ki = 3.9 microM at 20 degrees C), whereas for HRP it acted as a competitive inhibitor (Ki = 42 microM at 20 degrees C). A general scheme of inhibition of iodide peroxidation containing both enzymatic and non-enzymatic stages is proposed and discussed.  相似文献   

6.
A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(alpha 2----3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65 degrees C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 X 10(-6) M versus 6.3 X 10(-6) M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 X 10(-4) M and 4.3 X 10(-4) M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The "delipidated enzyme" could hydrolyze fetuin, NL, and ganglioside substrates, including GM1 and GM2. When the delipidated enzyme was exposed to high temperature (55 degrees C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1 also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.  相似文献   

7.
A thiol protease was isolated and purified from the crown leaf of pineapple, Ananas comosus (L.) Merr. cv. Queen, by an immunoaffinity procedure. After the purification to electrophoretic homogeneity, the enzyme was characterized with respect to some of its physico-chemical and kinetic properties. The molecular weight of the protease (22.4-22.9 kDa), Km (97 microM) and kcat (8.8 s(-1)) for its esterolytic cleavage of the synthetic protease substrate N(alpha)-CBZ-L-lysine p-nitrophenyl ester, the concentration of its thiol activator L-cysteine required for half maximal activation A0.5 (9.9 microM), optimum pH (6.5) for its proteolytic action on azocasein, T(1/2) (60 degrees C) for inactivation by heating the enzyme (35.5 microg protein/mL) in citrate buffer pH 6.0 for 15 min, and SH-group content (0.98 mol/mol enzyme) were determined. Most of these physicochemical and kinetic properties were found to be similar to those of the already well-characterized stem bromelain (EC 3.4.22.32). Thus, the immunoaffinity purified crown leaf protease appeared to be closely related to stem bromelain.  相似文献   

8.
A novel serine protease, which we have called IRCM-serine protease 1, was purified from both porcine neurointermediate and anterior pituitary lobes. The enzyme was inhibited by soybean trypsin inhibitor, pancreatic trypsin inhibitor, benzamidine, phenylmethyl-sulfonyl fluoride, and thiol reagents including HgCl2, p-chloromercuribenzoate, and 5,5'-dithiobis-(2-nitrobenzoic acid) and was resistant to lima bean trypsin inhibitor, alpha 2-macroglobulin, alpha 1-antitrypsin, and C1-esterase inhibitor. IRCM-serine protease 1 displayed "trypsin-like" specificity toward a number of tripeptide coumarin-containing substrates, with kcat/km values ranging from 10(4) to 10(6) M-1 S-1. The best substrate was benzyloxycarbonyl-L-Ala-L-Lys-L-Arg-4-methylcoumarin-7-amide with a kcat/Km value of 2.27 X 10(6) M-1 S-1. IRCM-serine protease 1, Mr = 169,000-190,000 determined by gradient gel electrophoresis and gel filtration, respectively, appears to be a homologous dimer. The monomeric subunits of the enzyme are composed of an Mr = 38,000 polypeptide chain which is modifiable by 125I-D-Tyr-Glu-Phe-Lys-Arg-CH2Cl, disulfide-linked to another polypeptide resulting in a subunit molecular weight of 88,000.  相似文献   

9.
The activities of NAD-independent D- and L-lactate dehydrogenases (D-LDH, L-LDH) were detected in Rhodopseudomonas palustris No. 7 grown photoanaerobically on lactate. One of these enzymes, D-LDH, was purified as an electrophoretically homogeneous protein (M(r), about 235,000; subunit M(r) about 57,000). The pI was 5.0. The optimum pH and temperature of the enzyme were pH 8.5 and 50 degrees C, respectively. The Km of the enzyme for D-lactate was 0.8 mM. The enzyme had narrow substrate specificity (D-lactate and DL-2-hydroxybutyrate). The enzymatic activity was competitively inhibited by oxalate (Ki, 0.12 mM). The enzyme contained a FAD cofactor. Cytochrome c(2) was purified from strain No. 7 as an electrophoretically homogeneous protein. Its pI was 9.4. Cytochrome c(2) was reduced by incubating with D-LDH and D-lactate.  相似文献   

10.
The major extracellular protease from Pseudomonas fluorescens strain AR-11 has been partially purified by a factor of 300 by a combination of DEAE-cellulose ion-exchange chromatography and gel filtration. The enzyme had a molecular weight of 38 400 and exhibited optimum activity with isoelectrically precipitated casein substrate at pH 6.5 with Km - 0.13 mM. The protease was strongly inhibited by a number of heavy metal ions at the 10 mM level and also inhibited by thiol agents, while 10 mM EDTA led to slight activation. Optimum activity was retained, amounting to 33% of the maximum activity at 4 degrees C and 72% at 20 degrees C. Heat inactivation studies in which the isolated protease was heated at high temperature before subsequent incubation at 35 degrees C with substrate showed that for 50% inactivation 25 s heating at 130 degrees C or 17 s at 140 degrees C of 8.5 s at 150 degrees C was requried. The combination of high stability to heat treatments and retention of considerable activity at low incubation temperatures indicates that such a protease might have considerable significance in the processing and subsequent storage of food and other products.  相似文献   

11.
The effect of aqueous methanol cryosolvents on the catalytic and structural properties of bovine trypsin has been investigated. The low freezing points and low viscosities of methanol-based cryosolvents are desirable for a variety of cryoenzymological experiments. Increasing concentrations of methanol caused increases in the values of kcat and Km for the hydrolysis of N alpha-benzyloxycarbonyl-L-lysine p-nitrophenyl ester at 0 degrees C and a small increase in Ki for inhibition by benzamidine. Based on product analysis the increase in kcat with increasing methanol concentration at pH* 4.0 and 6.5 can be completely accounted for by nucleophilic competition of methanol for the acyl enzyme intermediate. This observation indicates that deacylation is the rate-limiting step under these conditions. The effect of increasing methanol concentration on kcat/Km for the above ester substrate and N alpha-benzoyl-L-arginine p-nitroanilide was similar. Incubation experiments indicated that trypsin was quite stable in 70% methanol at 0 degrees C and below. The Arrhenius plot for the catalytic reaction in 70% methanol was linear over the 0 to -40 degrees C range, indicating no change in rate-determining step nor temperature-induced structural perturbation. No evidence for structural effects induced by methanol or temperature were detected by monitoring the intrinsic fluorescence and absorbance. We conclude that aqueous methanol cryosolvents are satisfactory for cryosolvent studies of trypsin.  相似文献   

12.
Recombinant full-length human procathepsin F, produced in the baculovirus expression system, was partially processed during the purification procedure to a form lacking the N-terminal cystatin-like domain and activated with pepsin. Active cathepsin F efficiently hydrolyzed Z-FR-MCA (kcat/Km=106 mM(-1) s(-1)) and Bz-FVR-MCA (kcat/Km=8 mM(-1) s(-1)), whereas hydrolysis of Z-RR-MCA was very slow (kcat/Km<0.2 mM(-1) s(-1)). Cathepsin F was rapidly and tightly inhibited by cystatin C, chicken cystatin and equistatin with Ki values in the subnanomolar range (0.03-0.47 nM), whereas L-kininogen was a less strong inhibitor of the enzyme (Ki=4.7 nM). Stefin A inhibited cathepsin F slowly (kass=1.6 x 10(5) M(-1) s(-1)) and with a lower affinity (Ki=25 nM). These data suggest that cathepsin F differs from other related endopeptidases by considerably weaker inhibition by stefins.  相似文献   

13.
Highly purified enzymes from Alcaligenes eutrophus H 16 were used for kinetic studies. Chorismate mutase was feedback inhibited by phenylalanine. In the absence of the inhibitor, the double-reciprocal plot was linear, yielding a Km for chorismate of 0.2 mM. When phenylalanine was present, a pronounced deviation from the Michaelis-Menten hyperbola occurred. The Hill coefficient (n) was 1.7, and Hill plots of velocity versus inhibitor concentrations resulted in a value of n' = 2.3, indicating positive cooperativity. Chorismate mutase was also inhibited by prephenate, which caused downward double-reciprocal plots and a Hill coefficient of n = 0.7, evidence for negative cooperativity. The pH optimum of chorismate mutase ranged from 7.8 to 8.2; its temperature optimum was 47 C. Prephenate dehydratase was competitively inhibited by phenylalanine and activated by tyrosine. Tyrosine stimulated its activity up to 10-fold and decreased the Km for prephenate, which was 0.67 mM without effectors. Tryptophan inhibited the enzyme competitively. Its inhibition constant (Ki = 23 muM) was almost 10-fold higher than that determined for phenylalanine (Ki = 2.6 muM). The pH optimum of prephenate dehydratase was pH 5.7; the temperature optimum was 48 C. Prephenate dehydrogenase was feedback inhibited by tyrosine. Inhibition was competitive with prephenate (Ki = 0.06 mM) and noncompetitive with nicotinamide adenine dinucleotide. The enzyme was further subject to product inhibition by p-hydroxyphenylpyruvate (Ki = 0.13 mM). Its Km for prephenate was 0.045 mM, and that for nicotinamide adenine dinucleotide was 0.14 mM. The pH optimum ranged between 7.0 and 7.6; the temperature optimum was 38 C. It is shown how the sensitive regulation of the entire enzyme system leads to a well-balanced amino acid production.  相似文献   

14.
Butyrylcholinesterase (BChE; E.C. 3.1.1.8.) was 260-fold purified from soluble fraction of rat intestine. The enzyme was composed of tetrameric globular form by nonreducing electrophoresis. Optimum pH value was determined as 7.2 after zero buffer extrapolation. Optimum temperature was examined as 37 degrees C after zero time extrapolation. The enzyme showed marked substrate activation with positively charged, acyl-choline substrates. As a measure of catalytic efficiency, kcat/Km values were determined as 16,210, 25,650, and 46,150 for acetylthiocholine (ATCh), propionylthiocholine (PTCh), and butyrylthiocholine (BTCh), respectively. When the catalytic efficiencies are compared, soluble isoform of rat intestinal BChE became increasingly efficient as the size of the acyl portion of the substrate increases; BTCh > PTCh > ATCh. Differently, the enzyme showed substrate inhibition with benzoylcholine (BzCh) and a kcat/Km value of 21,190 was found. Triton X-100 inhibited more efficiently the rat intestinal BChE soluble isoform than it did the human serum BChE.  相似文献   

15.
Cathepsin C, a lysosomal dipeptidyl aminopeptidase, is competitively and reversibly inhibited by guanidinium ions with a Ki approximately 1.5 mM. Loss of activity is not the result of conformational change, subunit dissociation or altered mobility of the enzyme, but rather reflects a specific binding of guanidinium ions to the active site. The finding that cathepsin C is not inhibited by substrate has allowed the kinetic parameters in the presence of guanidinium ion to be determined. Guanidinium significantly decreases the Km of substrate hydrolysis, without changing Vmax. In a novel application of the transferase reaction, the Km of the nucleophile substrate has been determined (11 mM) and found not to be affected by guanidinium, indicating its inhibition of substrate binding to the S, but not the S', site. Inhibition is suggested to be the result of shielding a negative charge on the enzyme important for interaction with the substrate.  相似文献   

16.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

17.
Human alcohol dehydrogenases and serotonin metabolism   总被引:2,自引:0,他引:2  
Human liver alcohol dehydrogenases (ADH) may participate in serotonin (5-hydroxytryptamine) metabolism. Class I and II isozymes catalyze the oxidation of 5-hydroxytryptophol (5-HTOL) with kcat/Km values ranging from 10 to 100 mM-1 min-1 compared to 4-66 mM-1 min-1 for that of ethanol at pH 7.40, 25 degrees C. The product, 5-hydroxyindoleacetaldehyde, was purified as its semicarbazone and identified by mass spectrometry. Ethanol competitively inhibits 5-HTOL oxidation by beta 1 gamma 2 ADH with a Ki of 440 microM, a value similar to the Km of ethanol, 210 microM. The inhibition constants for 1,10-phenanthroline and 4-methylpyrazole are 20 microM and 80 nM respectively, essentially identical to those obtained with ethanol as substrate, 22 microM and 70 nM, respectively. The competition between ethanol and 5-HTOL for ADH can explain observations of ethanol induced changes in serotonin metabolism in vivo.  相似文献   

18.
Extracellular acid and alkaline proteases from Candida olea   总被引:3,自引:0,他引:3  
Candida olea 148 secreted a single acid protease when cultured at acidic pH. In unbuffered medium, the culture pH eventually became alkaline and a single alkaline protease was produced. This was the only proteolytic enzyme produced when the organism was grown in buffered medium at alkaline pH. Both proteolytic enzymes were purified to homogeneity (as assessed by SDS-PAGE). The Mr of the acid protease was 30900, the isoelectric point 4.5; optimum activity against haemoglobin was at 42 degrees C and pH 3.3. This enzyme was inactivated at temperatures above 46 degrees C and was inhibited by either pepstatin and diazoacetyl-norleucine methyl ester but was insensitive to inhibition by either 1,2-epoxy-3-(p-nitrophenoxy)-propane or compounds known to inhibit serine, thiol or metallo proteases. The acid protease contained 11% carbohydrate. The alkaline protease had an Mr of 23400 and isoelectric point of 5.4. The activity of this enzyme using azocoll as substrate above 42 degrees C and was inhibited by phenylmethyl-sulphonyl fluoride and irreversible inactivated by EDTA. The enzyme was also partially inhibited by DTT but was insensitive to either pepstatin or p-chloromercuribenzoic acid.  相似文献   

19.
Thermotropic effects on the kinetics of glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) activity of hepatic microsomes from normal and alloxan-diabetic rat liver were investigated by determining V, Km and Ki (substrate inhibition) values. Influence of deoxycholate (0.1%) and 1-anilino-8-naphthalene sulfonate (2.5 mM) on the kinetics was also evaluated. 1. Substrate inhibition occurred at 0.06 M for the enzyme from normal rats and at 0.0-0.025 M for the enzyme from diabetic rats. 2. The enzyme from diabetic rats showed a transition that extended between 22.7 and 27 degrees C in the Arrhenius plot (log V vs. T-1) instead of at 19.5 degrees C. 3. Deoxycholate increased the V value of both enzymes without affecting substrate inhibition at all the temperatures but did not completely abolish the transition in the Arrhenius plot of the enzyme from diabetic rats. 4. 1-Anilino-8-naphthalene sulfonate eliminated substrate inhibition and activated the enzyme of normal rats above 27.5 degrees C by increasing both V and Km values. Below this temperature, the enzyme showed biphasic or allosteric kinetics. At low substrate concentrations it was activated as both V and Km values were increased. The enzyme from diabetic rats, on the other hand, was activated at all the temperatures and exhibited linear kinetics. 5. Binding of 1-anilino-8-naphthalene sulfonate to the microsomal fraction increased with decreasing temperature as revealed by the increase of relative fluorescence. The microsomal fraction of diabetic rats showed a more anomalous fluorescence response between 13-18 degrees C. 6. Enthalpy changes for glucose 6-phosphate binding to the inhibition site were slightly larger than binding to the active site. Calculated entropies of activation for transition state complex of glucose-6-phosphatase reaction were fairly large and negative. The free energy of activation (28-30 kcal/mol) was independent of temperature and experimental conditions. 7. In the microsomal fraction (total as well as rough), phospholipid content and fatty acid unsaturation index of phospholipids were decreased after diabetes. The level of free cholesterol remained unchanged but the molar ratio of cholesterol to phospholipid increased. The different thermal response and 1-anilino-8-naphthalene sulfonate interaction to the enzyme from diabetic rat and liver could be ascribed to the altered lipid environment of the enzyme on the endoplasmic reticulum membrane.  相似文献   

20.
Intermediates of Aeromonas aminopeptidase are monitored through fluorescence generated by radiationless energy transfer (RET) between enzyme tryptophans and the dansyl group of the bound substrate. Upon binding of the substrate enzyme tryptophan fluorescence is quenched and substrate dansyl fluorescence enhanced. These processes are reversed upon hydrolysis of the Leu-Ala bond and release of Ala-DED from the enzyme. Stopped-flow RET kinetic analysis yields values of kcat = 36 sec-1 and Km = 3.7 microM at pH 7.5 and 20 degrees C. These values represent the highest kcat/Km ratio, 1 X 10(7) M-1 sec-1, of any substrate for Aeromonas aminopeptidase. The excellent binding properties of the peptide permit direct visualization of ES complexes even at enzyme concentrations of 10(-7) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号