首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

2.
Phenothiazines (PTZ) such as chlorpromazine (CPZ) or trifluoperazine (TPZ) induced a sustained divalent cation-permeable channel activity when applied on either side of inside-out patches or on external side of cell-attached patches of adult rat ventricular myocytes. The percentage of active patches was 20%. In the case of CPZ, the K dof the dose-response curve was 160 m. CPZ-activated channels were potential-independent in the physiological range of membrane potential and were permeable to several divalent ions (Ba2+, Ca2+, Mg2+, Mn2+). At least three levels of currents were usually detected with conductances of 23, 50 and 80 pS in symmetrical 96 mm Ba2+ solution and 17, 36 and 61 pS in symmetrical 96 mm Ca2+ solution. Saturation curves corresponding to the three main conductances determined in Ba2+ symmetrical solutions (tonicity compensated with choline-Cl) gave maximum conductances of 36, 81 and 116 pS (with corresponding half-saturating concentration constants of 31.5, 38 and 34.5 mm). The corresponding conductance values were estimated to 1.7, 3.3 and 5.2 pS in symmetrical 1.8 mm Ba2+ and to 1.1, 2.4 and 3.7 pS in symmetrical 1.8 mm Ca2+ (the value in normal Tyrode solution). Channels were poorly permeable to monovalent cations, such as Na, with a P Ba/P Na ratio of 10. A PTZ-induced channel activity similar to that described in cardiac cells was also observed in cultured rat aortic smooth muscle cells but not in cultured neuroblastoma cells.PTZ-activated channels described in cardiac cells appear very similar to the sporadically active divalent ion permeable channels described in a previous paper (Coulombe et al., 1989). Surprisingly, when 100 m CPZ were applied to myocytes studied in the whole-cell configuration, and maintained at a holding potential of –80 mV in the presence of 24 mm external Ca2+ or Ba2+, no detectable macroscopic inward current could be observed, whereas the L-type Ca2+ current triggered by depolarizing pulses was markedly and reversibly reduced. The possible reasons are discussed.  相似文献   

3.
Summary We have used a combination of chemical labeling and detergent fractionation techniques to locate the divalent cation binding sites on the chloroplast membrane. We determined the Ca2+-binding properties of Triton X-100 subchloroplast particles. Photosystem II (TSFII) particles showed one binding site withn=8.4 moles-mg chl–1 andk d =20 m. Photosystem I (TSFI) particles contained two binding sites. The first had ann=1.5 moles-mg chl–1 andk d =4 m. The second had ann=9.6 moles-mg chl–1 andk d =160 m. We have previously shown (Prochaska & Gross,Biochim. Biophys. Acta 376:126, 1975) that the divalent cation binding sites could be blocked using a water-soluble carbodiimide plus a nucleophile. Chlorophylla fluorescence and lightscattering changes were affected at the same carbodiimide concentrations emphasizing the relationship between these processes. The carbodiimide-sensitive sites were found to be located on the Photosystem II particles. A direct correlation between the inhibition of calcium binding and the carbodiimide-mediated incorporation of a (14C)-nucleophile was observed upon varying such parameters as carbodiimide concentration, nucleophile concentration, pH, and time of reaction. The presence of CaCl2 during the carbodiimide plus nucleophile modification procedure decreased the incorporation of (14C)-nucleophile, emphasizing the competition of the CaCl2 and the modification reagents for some of the same sites. Sodium dodecylsulfate gel electrophoresis of chlorophyll protein aggregates suggested that the site of competition of the calcium chloride and the modification reagents was the light-harvesting chlorophylla/b protein.  相似文献   

4.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

5.
In cyanobacteria, the glutamine synthetase-L-glutamine-2-oxoglutarate aminotransferase (GS-GOGAT) pathway is the major ammonia-assimilating route. The GS ofAnabaena doliolum was synthesized more under N2-fixing conditions, followed by ammonium, nitrate, and nitrite as nitrogen sources. The activities of both the glutamine synthetase, Mg2+-dependent biosynthetic and Mn2+-dependent -glutamyl transferase were optimum at pH 7. The active site of the enzyme bears sulfhydryl (-SH) groups; this was confirmed with the-SH group inhibitors, para-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM). The biosynthetic and -glutamyl transferase activities showed specificity for the divalent cations, Mg2+ and Mn2+, respectively. The other divalent cations Co2+, Cu2+, and Ni2+ were poor substitutes. This enzyme also required these divalent cations to stabilize its structure and function under extreme conditions such as high and low temperatures and urea denaturation. The glutamate analogl-methionine-d,l-sulfoximine, inactivated the enzyme, whereas the GOGAT inhibitor, azaserine, had no effect on the enzyme activity. The GS enzyme required de novo protein synthesis.  相似文献   

6.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

7.
We examined the effects of changing KCl concentration on the secondary structures of -actinins using circular dichroism (CD), 1,1-bis(4-anilino) naphthalene-5,5-disulfonic acid (bisANS) fluorescence and proteolysis experiments. Under near-physiological conditions, divalent cations also were added and changes in conformation were investigated. In 25 mm KH2PO4, pH 7.5, increasing KCl from 0 to 120 mm led to decreases in -helix conformation for brain, platelet and heart -actinins (40.5-30.2%, 65.5-37.8% and 37.5-27.8%, respectively). In buffered 120 mm KCl, 0.65 mm calcium produced small changes in the CD spectra of both brain and platelet -actinin, but had no effect on heart -actinin. bisANS fluorescence of all three -actinins also showed significant changes in conformation with increasing KCl. However, in buffered 120 mm KCl increasing concentrations of Ca2+ or Mg2+ did not have significant effects on the bisANS fluorescence of any -actinin. Digestion of brain, platelet and heart -actinins with -chymotrypsin showed an increase of proteolytic susceptibility in 120 mm KCl. These experiments also showed that increasing the concentration of Ca2+ or Mg2+ led to greater changes in digestion fragment patterns in the absence of KCl than in the presence of 120 mm KCl. The results suggest that -actinins exist in different conformations depending on the ionic strength of the medium, which could explain the differences in calcium and F-actin binding results obtained from different -actinins.  相似文献   

8.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

9.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

10.
Summary Malonyl gramicidin is incorporated into lysolecithin micelles in a manner which satisfies a number of previously demonstrated criteria for the formation of the transmembrane channel structure. By means of sodium-23 nuclear magnetic resonance, two binding sites are observed: a tight site and a weak site with binding constants of approximately 100m –1 and 1m –1, respectively. In addition, off-rate constants from the two sites were estimated from NMR analyses to bek off t 3×105/sec andk off w 2×107/sec giving, with the binding constants, the on-rate constants,k on t 3×107/msec andk on w 2×107/m sec.Five different multiple occupancy models with NMR-restricted energy profiles were considered for the purpose of calculating single-channel currents as a function of voltage and concentration utilizing the four NMR-derived rate constants (and an NMR-limit placed on a fifth rate constant for intrachannel ion translocation) in combination with Eyring rate theory for the introduction of voltage dependence.Using the X-ray diffraction results of Koeppe et al. (1979) for limiting the positions of the tight sites, the two-site model and a three-site model in which the weak sites occur after the tight site is filled were found to satisfactorily calculate the experimental currents (also reported here) and to fit the experimental currents extraordinarily well when the experimentally derived values were allowed to vary to a least squares best fit. Surprisingly the best fit values differed by only about a factor of two from the NMR-derived values, a variation that is well within the estimated experimental error of the rate constants.These results demonstrate the utility of ion nuclear magnetic resonance to determine rate constants relevant to transport through the gramicidin channel and of the Eyring rate theory to introduce voltage dependence.  相似文献   

11.
Malic enzyme of the phototrophic bacterium Chromatium vinosum strain D that lacks malate dehydrogenase was partially purified yielding a specific activity of 55 units/mg protein. The constitutive enzyme with a molecular weight of 110,000 and a pH optimum of 8.0 was absolutely dependent on the presence of a monovalent cation (NH 4 + , K+, Cs+, or Rb+) as well as a divalent cation (Mn2+, or Mg2+). The enzyme was inhibited by oxaloacetate, glyoxylate, and NADPH. The K 0.5 value for L-malate and the inhibition constants for oxaloacetate and glyoxylate are dependent on the concentration of the monovalent cation, whereas the K m value for NADP (18 M) and the K 1 value for NADPH (42 M) are independent. Throughout all kinetic measurements hyperbolic saturation curves and linear double reciprocal plots were obtained.Abbreviations OAA oxaloacetate - OD optical density  相似文献   

12.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

13.
A component responsible for the aggregation of cells was extracted from Flavobacterium strain B by treatment of cells with 5 m guanidine hydrochloride and partially purified by gel filtration. The guanidine hydrochloride-extracted cells were reaggregated with the component after dialysis against 0.3mm of CaCl2. Various divalent cations were effective in place of Ca2+, but Ca2+ was most effective for reconstitution. The reconstituted flocs were deflocculated by the treatment of Pronase or ethylenediaminetetraacetic acid indicating that reconstituted flocs closely resemble natural flocs.  相似文献   

14.
Summary We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine(3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 m) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca2+-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 m, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+] i ) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 m La3+. However, 3 m La3+ produced only a partial block of voltage clamped Ca2+ current (I Ca). Following La3+ (10 m) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 m) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (I A ) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.  相似文献   

15.
Summary Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 m ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 m) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.  相似文献   

16.
The Na/Ca exchanger from lobster muscle crossreacts specifically with antibodies raised against the dog heart Na/Ca exchanger. Immunoblots of the lobster muscle and mammalian heart exchangers, following SDS-PAGE, indicate that the invertebrate and mammalian exchangers have similar molecular weights: about 120 kDa. The exchanger from lobster muscle was partially purified and functionally reconstituted into asolectin vesicles which were loaded with 160 mm NaCl. 45Ca uptake by these proteoliposomes was promoted by replacing 160 mm NaCl in the external medium with 160 mm KCl to produce an outwardly-directed Na+ concentration gradient. When the proteoliposomes were adsorbed onto black lipid membranes (BLM), and DMNitrophen-Ca2+ (caged Ca2+) was added to the KCl medium, photolytically-evoked Ca2+ concentration jumps elicited transient electric currents. These currents corresponded to positive charge exiting from the proteoliposomes, and were consistent with the Na/Ca exchanger-mediated exit of 3 Na+ in exchange for 1 entering Ca2+. The current was dependent upon the Ca2+ concentration jump, the protein integrity, and the outwardly directed Na+ gradient. KCl-loaded proteoliposomes did not produce any current. Low external Na+ concentrations augmented the current, whereas Na+ concentrations >25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with halfmaximal activation (KM(Ca)) at <10 m Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysisevoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Cadependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 m DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electrophysiological methods.The technical assistance of Verena Heiselpetz in some experiments is gratefully acknowledged. This work was partly supported by the Deutsche Forschungsgemeinschaft (SFB 169) and by National Institutes of Health grants HL30315 and GM39500 to JHK and HL45215 and NS16106 to MPB. MPB was the recipient of a Senior Scientist Award from the Alexander von Humboldt Stiftung.  相似文献   

17.
Polyphosphoinositide-specific phospholipase C activity was present in plasma membranes isolated from different tissues of several higher plants. Phospholipase C activities against added phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) were further characterized in plasma membrane fractions isolated from shoots and roots of dark-grown wheat (Triticum aestivum L. cv Drabant) seedlings. In right-side-out (70-80% apoplastic side out) plasma membrane vesicles, the activities were increased 3 to 5 times upon addition of 0.01 to 0.025% (w/v) sodium deoxycholate, whereas in fractions enriched in inside-out (70-80% cytoplasmic side out) vesicles, the activities were only slightly increased by detergent. Furthermore, the activities of inside-out vesicles in the absence of detergent were very close to those of right-side-out vesicles in the presence of optimal detergent concentration. This verifies the general assumption that polyphosphoinositide phospholipase C activity is located at the cytoplasmic surface of the plasma membrane. PIP and PIP2 phospholipase C was dependent on Ca2+ with maximum activity at 10 to 100 μm free Ca2+ and half-maximal activation at 0.1 to 1 μm free Ca2+. In the presence of 10 μm Ca2+, 1 to 2 mm MgCl2 or MgSO4 further stimulated the enzyme activity. The other divalent chloride salts tested (1.5 mm Ba2+, Co2+, Cu2+, Mn2+, Ni2+, and Zn2+) inhibited the enzyme activity. The stimulatory effect by Mg2+ was observed also when 35 mm NaCl was included. Thus, the PIP and PIP2 phospholipase C exhibited maximum in vitro activity at physiologically relevant ion concentrations. The plant plasma membrane also possessed a phospholipase C activity against phosphatidylinositol that was 40 times lower than that observed with PIP or PIP2 as substrate. The phosphatidylinositol phospholipase C activity was dependent on Ca2+, with maximum activity at 1 mm CaCl2, and could not be further stimulated by Mg2+.  相似文献   

18.
The first enzyme (named GTP cyclohydrolase) in the pathway for the biosynthesis of pteridines has been partially purified from extracts of late pupae and young adults of Drosophila melanogaster. This enzyme catalyzes the hydrolytic removal from GTP of carbon 8 as formate and the synthesis of 2-amino-4-hydroxy-6-(d-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine triphosphate (dihydroneopterin triphosphate). Some of the properties of the enzyme are as follows: it functions optimally at pH 7.8 and at 42 C; activity is unaffected by KCl and NaCl, but divalent cations (Mg2+, Mn2+, Zn2+, and Ca2+) are inhibitory; the K m for GTP is 22 m; and the molecular weight is estimated at 345,000 from gel filtration experiments. Of a number of nucleotides tested, only GDP and dGTP were used to any extent as substrate in place of GTP, and these respective compounds were used only 1.8% and 1.5% as well as GTP.This work was supported by research grants from the National Institutes of Health (AM03442) and the National Science Foundation (GB33929).  相似文献   

19.
Summary The voltage- and time-dependent K+ current,I K + out , elicited by depolarization of corn protoplasts, was inhibited by the addition of calcium channel antagonists (nitrendipine, nifedipine, verapamil, methoxyverapamil, bepridil, but not La3+) to the extracellular medium. These results suggested that the influx of external Ca2+ was necessary for K+ current activation. The IC50, concentration of inhibitor that caused 50% reduction of the current, for nitrendipine was 1 m at a test potential of +60 mV following a 20-min incubation period.In order to test whether intracellular Ca2+ actuated the K+ current, we altered either the Ca2+ buffering capacity or the free Ca2+ concentration of the intracellular medium (pipette filling solution). By these means,I K + out could be varied over a 10-fold range. Increasing the free Ca2+ concentration from 40 to 400nm also shifted the activation of the K+ current toward more negative potentials. Maintaining cytoplasmic Ca2+ at 500nm with 40nm EGTA resulted in a more rapid activation of the K+ current. Thus the normal rate of activation of this current may reflect changes in cytoplasmic Ca2+ on depolarization. Increasing intracellular Ca2+ to 500nm or 1 m also led to inactivation of the K+ current within a few minutes. It is concluded thatI K + out is regulated by cytosolic Ca2+, which is in turn controlled by Ca2+ influx through dihydropyridine-, and phenylalkylamine-sensitive channels.  相似文献   

20.
Summary The objectives of the title were accomplished by a four-step experimental procedure followed by a simple graphical and mathematical analysis. Platelets are (i) overloaded with the indicator quin2 to cytoplasmic concentrations of 2.9mm and (ii) are exposed to 2mm external Ca2+ and 1.0 m ionomycin to rapidly achieve cytoplasmic Ca2+ ([Ca2+]cyt) of ca. 1.5 m. (iii) The external Ca2+ is removed by EGTA addition, and (iv) the active Ca2+ extrusion process is then monitored as a function of time. Control experiments show that the ionophore shunts dense tubular uptake and does not contribute to the Ca2+ efflux process during phases iii–iv and that the extrusion process is sensitive to metabolic inhibitors.The progress curves for the decline of quin2 fluorescence (resulting from active Ca2+ extrusion) were analyzed as a function of [Ca2+]cyt using a mathematical model involving the probability that an exported Ca2+ was removed from a quin2 complex (vs. a cytoplasmic binding element). The observed rates of decline of quin2 fluorescence at a particular [Ca2+]cyt are dependent upon (i) the absolute rate of the extrusion system (a function of itsK m, Vm and Hill coefficient (n)), (ii) the intrinsic Ca2+ buffer capacity of the cytoplasm (a function of the total site concentration ([B] T ) and itsK d) and (iii) the buffer capacity of the intracytoplasmic quin2 (a function of its concentration andK d). The contribution of (iii) was known and varied and was used to determine (ii) and (i) as a function of [Ca2+]cyt.The Ca2+ binding data were verified by45Ca2+ experimentation. The data fit a single binding site ([B] T =730±200 m) with an averageK d of 140±10n m. This can be accounted for by platelet-associated calmodulin. The rate of the Ca2+ extrusionvs. [Ca2+]cyt curve can be described by two components: A saturable one withV m=2.3±0.3 nmol min–1 mg-membrane–1,K m=80±10 andn=1.7±0.3 (probably identified with a Ca2+-ATPase pump) and a linear one (probably identified with a Na+/Ca2+ exchanger).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号