首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
Mechanisms of interleukin-18 (IL-18) and interleukin-10 (IL-10) in lipopolysaccharide (LPS) induced endotoxemia are not clear; their protective role is being investigated so that they may effectively modulate the host cytokine levels during endotoxemia. The aim of the study was to evaluate protective effects of IL-18 and IL-10 in experimentally induced endotoxemia in mice correlating the changes in tissue anti-oxidant enzymes and circulating cytokines. Liver injury was determined by estimation of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), serum nitric oxide (NOx), hepatic anti-oxidant enzyme and cytokine content in LPS (250 microg/kg) induced endotoxemic mice receiving either IL-18 (500 ng/mouse) or IL-10 (600 ng/mouse) treatment. Mice (87% of IL-10 treated and 74% of IL-18 treated) survived when administered prior to LPS challenge. Pre-treatment of mice with either IL-10 or IL-18 followed by LPS, lead to reduction in SGPT and SGOT level, serum NOx, and altered hepatic anti-oxidant enzymes activity and myeloperoxidase activity than the only LPS treated group. Marked reduction in the amounts of LPS-induced hepatic and splenic TNF-u content has been observed after IL-10 pre-treatment. Results suggested that attenuating the induction of TNF-alpha and IFN-gamma and subsequent induction of nitric oxide formation in response to LPS may in part account for efficient protection by IL-18 and IL-10 in the reduction of LPS-induced liver injury.  相似文献   

2.
IL-18 binding protein (IL-18BP) is a circulating antagonist of the proinflammatory Th1 cytokine IL-18. It effectively blocks IL-18 by forming a 1:1 high affinity (Kd=400 pM) complex, exhibiting a very low dissociation rate. We have developed a sandwich ELISA for IL-18BPa and determined its limit of detection (62 pg/ml). Interference by IL-18 and related cytokines, as well as cross reactivity with other IL-18BP isoforms (b, c, and d) were determined. Using this ELISA, we measured serum IL-18BPa in large cohorts of healthy individuals and in septic patients. Serum IL-18BPa in healthy individuals was 2.15+/-0.15 ng/ml (range 0.5-7 ng/ml). In sepsis, the level rose to 21.9+/-1.44 ng/ml (range 4-132 ng/ml). Total IL-18 was measured in the same sera by an electrochemiluminescence assay and free IL-18 was calculated based on the mass action law. Total IL-18 was low in healthy individuals (64+/-17 pg/ml) and most of it ( approximately 85%) was in its free form. Total IL-18 and IL-18BPa were both elevated in sepsis patients upon admission (1.5+/-0.4 ng/ml and 28.6+/-4.5 ng/ml, respectively). At these levels, most of the IL-18 is bound to IL-18BPa, however the remaining free IL-18 is still higher than in healthy individuals. We conclude that IL-18BPa considerably inhibits circulating IL-18 in sepsis. Yet, exogenous administration of IL-18BPa may further reduce circulating IL-18 activity.  相似文献   

3.
In addition to stimulating IFN-gamma synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1beta and the chemokines IL-8 and macrophage inflammatory protein-1alpha. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1beta converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1beta, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1beta-/- mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-gamma but not IL-1beta in ICE-/- mice is responsible for this resistance. However, IFN-gamma-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-gamma-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-gamma and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-gamma and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-gamma production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.  相似文献   

4.
Interleukin (IL)-18 is a pro-inflammatory cytokine that plays a critical role in inflammation leading to liver damage, through promotion of Fas-mediated apoptosis. Inhibition of IL-18 activity protects against LPS-induced lethality in mice and against liver damage induced by LPS after sensitisation of mice with Proprionibacterium acnes. A specific, potent, endogenous inhibitor of IL-18 (IL-18BP) has been identified in mice and humans, and IL-18BP mRNA is expressed constitutively in liver. The objectives of this study were to compare changes in IL-1beta and IL-18 mRNA expression in the liver of rats in response to peripheral injection of LPS, using real-time PCR, and also to investigate whether IL-18BP mRNA expression is affected by this treatment. LPS rapidly up-regulated IL-1beta mRNA expression, but IL-18 mRNA expression was unaffected by LPS treatment. Unlike IL-18, IL-18BP mRNA was up-regulated dramatically by approximately 12-fold above nai;ve levels, peaking 3 h after LPS injection. This ability of LPS to up-regulate expression of the endogenous IL-18 inhibitor may indicate a mechanism by which the inflammatory response to LPS is regulated.  相似文献   

5.
Synovial tissue macrophage as a source of the chemotactic cytokine IL-8   总被引:30,自引:0,他引:30  
Cells of the synovial microenvironment may recruit neutrophils (PMN) and lymphocytes into synovial fluid, as well as lymphocytes into the synovial tissues, of arthritic patients. We have investigated the production of the chemotactic cytokine IL-8 by using sera, synovial fluid, synovial tissue, and macrophages and fibroblasts isolated from synovial tissues from 75 arthritic patients. IL-8 levels were higher in synovial fluid from rheumatoid (RA) patients (mean +/- SE, 14.37 +/- 5.8 ng/ml), compared with synovial fluid from osteoarthritis patients (0.135 +/- 17 ng/ml) (p less than 0.05) or from patients with other arthritides (5.52 +/- 5.11 ng/ml). IL-8 from RA sera was 8.44 +/- 2.33 ng/ml, compared with nondetectable levels found in normal sera. IL-8 levels from RA sera and synovial fluid were strongly positively correlated (r = 0.96, p less than 0.05). Moreover, RA synovial fluid chemotactic activity for PMN in these fluids was inhibited 40 +/- 5% upon incubation with neutralizing polyclonal antibody to IL-8. Synovial tissue fibroblasts released only small amounts of constitutive IL-8 but could be induced to produce IL-8 by stimulation with either IL-1 beta, TNF-alpha, or LPS. In contrast, unlike normal PBMC or alveolar macrophages, macrophages isolated from RA synovial tissue constitutively expressed both IL-8 mRNA and antigenic IL-8. RA synovial macrophage IL-8 expression was not augmented by incubation with either LPS, TNF-alpha, or IL-1 beta. Immunohistochemical analysis of synovial tissue showed that a greater percentage of RA macrophages than osteoarthritis macrophages reacted with anti-IL-8. Whereas macrophages were the predominant cell for immunolocalization of IL-8, less than 5% of synovial tissue fibroblasts were positive for immunolocalized IL-8. These results suggest that macrophage-derived IL-8 may play an important role in the recruitment of PMN in synovial inflammation associated with RA.  相似文献   

6.
C-reactive protein (CRP) is a component of the acute phase response to infection, inflammation, and trauma. A major activity of acute phase proteins is to limit the inflammatory response. It has been demonstrated that CRP protects mice from lethal doses of LPS. In the mouse, CRP binds to the regulatory receptor, FcgammaRIIb, and to the gamma-chain-associated receptor, FcgammaRI. The goal ofthis study was to determine whether FcgammaRs are necessary for the protective effect of CRP. The ability of CRP to protect mice from a lethal dose of LPS was confirmed using injections of 500 and 250 micro g of CRP at 0 and 12 h. CRP treatment of FcgammaRIIb-deficient mice increased mortality after LPS challenge and increased serum levels of TNF and IL-12 in response to LPS. CRP did not protect FcR gamma-chain-deficient mice from LPS-induced mortality. Treatment of normal mice, but not gamma-chain-deficient mice, with CRP increased IL-10 levels following LPS injection. In vitro, in the presence of LPS, CRP enhanced IL-10 synthesis and inhibited IL-12 synthesis by bone marrow macrophages from normal, but not gamma-chain-deficient mice. The protective effect of CRP appears to be mediated by binding to FcgammaRI and FcgammaRII resulting in enhanced secretion of the anti-inflammatory cytokine IL-10 and the down-regulation of IL-12. These results suggest that CRP can alter the cytokine profile of mouse macrophages by acting through FcgammaR leading to a down-regulation of the inflammatory response.  相似文献   

7.
BALB/c mice were sensitized to lethal effects of human rTNF-alpha and of human rIL-1 alpha by simultaneous treatment with sublethal doses of actinomycin D (Act D) or D-galactosamine (GalN). In contrast, treatment with sublethal doses of TNF or IL-1 themselves resulted in desensitization of the mice to the lethal effect of these cytokines: mice injected with TNF or IL-1 in the absence of Act D or GalN responded to a second injection of TNF or IL-1, this time together with Act D or GalN, by a significantly delayed death, or even survived. Desensitization developed rapidly (0.5-1.0 h) and abated 24 to 48 h postinjection. Each of the two cytokines induced hyporesponsiveness to its own lethal effect as well as to that of the other. Injection of TNF or IL-1 at sublethal doses resulted also in hyporesponsiveness to the lethal effect of LPS on mice primed with bacillus Calmette-Guérin, an effect which most likely is mediated by TNF and IL-1 produced in those mice in response to the LPS. TNF and IL-1 in combination had an additive effect both in lethality and in desensitization of the mice. These findings suggest that some of the deleterious effects of TNF and IL-1 are modulated by antagonistic mechanisms; mechanisms which can be suppressed by sensitizing agents, specifically by agents inhibiting the synthesis of RNA or protein; but which, in the absence of such agents, are found to be augmented in response to TNF and IL-1, thus resulting in desensitization.  相似文献   

8.
A severe systemic inflammatory response is usually seen after burn injury. IL-18 enhances the Th1 immune responses in bacterial andviral infections. In order to evaluate the IL-18 serum levels as well as IL-6 and TNF-alpha at the 48th hour postburn, serial serum samples of 8 burned patients were analyzed. 8 moderately burned patients were included into the study. Serum samples were taken at admission at the 48th hour of postburn. IL-6, IL-18, and TNF-alpha serum levels were analyzed. Total mean burned surface area (TBSA) was 24.6 +/- 5.7% and mean BMI (body mass index) was 24.5 +/- 3.4. The patients' age ranged from 17 to 38 (mean 26.3 +/- 7.4) years. An increase in sera IL-6, IL-18, and TNF-alpha was detected at the 48th hour postburn (P < .0001). All patients survived. A marked increase in serum levels of IL-18 as well as the other cytokines evaluated was observed in the moderately burned patients. These three parameters were highly correlated with each other (r > 0.9 and P < .001). This is the first study that shows an increase in serum IL-18 levels at the early postburn period.  相似文献   

9.
Cytokines have been studied intensively to delineate their role in the altered pathophysiology observed in septic shock. We studied the role of TNF in the lethality of two well characterized models of septic shock by inhibiting TNF's activity with a specific antibody. In the first model, sepsis was induced by cecal ligation and puncture (CLP), and in the second model sepsis was induced by either an i.p. or i.v. injection of LPS. After CLP, plasma endotoxin was detectable within 4 h and reached a peak at 8 h (136 +/- 109 ng/ml). TNF bioactivity peaked at 12 h (528 +/- 267 pg/ml) at a significantly higher level than sham-operated control mice (64 +/- 31 pg/ml). After i.p. LPS, TNF peaked much more quickly (90 min) compared with CLP and at a significantly higher level (107,900 +/- 25,000 pg/ml). Another cytokine studied in septic shock, IL-6, peaked at 12 h after CLP at 1011 +/- 431 pg/ml, and at 90 min after lethal LPS at 16,300 +/- 3,700 pg/ml. Mice were treated with an anti-TNF antibody that has been shown previously to inhibit in vivo TNF activity. Antibody treatment of mice subjected to CLP significantly reduced TNF bioactivity but did not reduce mortality or pulmonary neutrophilic infiltration. In the i.v. LPS model, anti-TNF antibody treatment concomitant with LPS injection reduced plasma TNF activity from 80,000 +/- 20,000 pg/ml to undetectable levels. However, anti-TNF treatment immediately before either i.v. or i.p. LPS did not reduce mortality. Additionally, when the antibody was administered 4 h before the lethal i.v. LPS, there was no reduction in lethality. These data show that in two separate models of septic shock blockade of TNF biologic activity will not prevent lethality.  相似文献   

10.
11.
Altinova AE  Yetkin I  Akbay E  Bukan N  Arslan M 《Cytokine》2008,42(2):217-221
The study was designed to examine serum IL-18 level and its relation to metabolic control parameters and microvascular complications in type 1 diabetes mellitus (DM). Sixty two patients with type 1 DM and 30 healthy individuals were enrolled in the study. Serum IL-18 levels of patients with type 1 DM were significantly increased compared to controls (293.4+/-133.4 vs 211.2+/-63.9 pg/ml, P=0.003). Patients with poor glycemic control had higher levels of IL-18 than patients with well glycemic control (329.9+/-141.0 vs 226.3+/-89.6 pg/ml, P=0.02). There was no significant difference between the serum IL-18 levels of patients with microvascular complications and those of patients without microvascular complications (307.6+/-127.6 vs 293.2+/-145.6 pg/ml, P>0.05). IL-18 correlated positively with HbA(1c) (r=0.32, P=0.01) and postprandial blood glucose (PPBG) (r=0.26, P=0.02); and negatively with HDL-cholesterol (HDL-C) (r=-0.38, P=0.007). By linear regression analysis, PPBG was determined as the most explanatory parameter for the alterations in serum IL-18 levels (P=0.02). High levels of IL-18 in patients with type 1 DM is related to short and long term glycemic control and HDL-C levels but not to microvascular complications.  相似文献   

12.
IL-18-binding protein (IL-18BP) is a natural IL-18 inhibitor. Human IL-18BP isoform a was produced as fusion construct with human IgG1 Fc and assessed for binding and neutralizing IL-18. IL-18BP-Fc binds human, mouse, and rat IL-18 with high affinity (K(D) 0.3-5 nM) in a BIAcore-based assay. In vitro, IL-18BP-Fc blocks IL-18 (100 ng/ml)-induced IFN-gamma production by KG1 cells (EC(50) = 0.3 microg/ml). In mice challenged with an LD(90) of LPS (15 mg/kg), IL-18BP-Fc (5 mg/kg) administered 10 min before LPS blocks IFN-gamma production and protects against lethality. IL-18BP-Fc administered 10 min before LPS blocks IFN-gamma production induced by LPS (5 mg/kg) with ED(50) of 0.005 mg/kg. Furthermore, IL-18BP-Fc (5 mg/kg) abrogates LPS (5 mg/kg)-induced IFN-gamma production even when administered 6 days before LPS but shows no effect when administered 9 or 12 days before LPS. Given 10 min before LPS challenge to mice primed 12 days in advance with heat-killed Propionibacterium acnes, IL-18BP-Fc prevents LPS-induced liver damage and IFN-gamma and Fas ligand expression. Given at the moment of priming with P. acnes, IL-18BP-Fc decreases P. acnes-induced granuloma formation, macrophage-inflammatory protein-1alpha and macrophage-inflammatory protein-2 production and prevents sensitization to LPS. IL-18BP-Fc also prevents Con A-induced liver damage and IFN-gamma and Fas ligand expression as well as liver damage induced by Pseudomonas aeruginosa exotoxin A or by anti-Fas agonistic Ab. In conclusion, IL-18BP can be engineered and produced in recombinant form to generate an IL-18 inhibitor, IL-18BP-Fc, endowed with remarkable in vitro and in vivo properties of binding and neutralizing IL-18.  相似文献   

13.
14.
Hyperlipidemia frequently accompanies infectious diseases and may be due to increases in lipoprotein production or decreases in lipoprotein clearance. The administration of endotoxin (LPS) has been used to mimic infection and prior studies demonstrate that LPS produces hypertriglyceridemia. In the present study in rodents, the dose of LPS necessary to induce hyperlipidemia was orders of magnitude less than that necessary to induce shock and death. As little as 10 ng/100 g body weight induced hypertriglyceridemia and this increase in serum triglyceride levels occurred rapidly (78% increase at 2 h). At high doses of LPS (50 micrograms/100 g body weight), the clearance of triglyceride-rich lipoproteins was decreased. At low doses of LPS (100 ng/100 g body weight), triglyceride clearance was not altered but the hepatic secretion of triglyceride was increased. Low dose LPS stimulated hepatic de novo fatty acid synthesis and lipolysis, both of which provided a source of fatty acids for the increase in hepatic triglyceride production. High dose LPS did not increase hepatic fatty acid synthesis or peripheral lipolysis, and hepatic triglyceride secretion was not stimulated. Thus, low dose LPS produces hypertriglyceridemia by increasing hepatic lipoprotein production, while high dose LPS produces hypertriglyceridemia by decreasing lipoprotein catabolism. Administration of anti-tumor necrosis factor (TNF) antibodies or interleukin 1 (IL-1) receptor antagonist did not prevent the increase in serum triglyceride levels induced by LPS. However, anti-TNF antibodies and interleukin 1 receptor antagonist (IL-1ra) blocked the increase in serum triglycerides induced by TNF or IL-1, respectively. These data suggest that neither of these cytokines is absolutely required for the increase in serum triglycerides induced by LPS, raising the possibility that other cytokines, small molecular mediators, or LPS itself may play a crucial role.  相似文献   

15.
Serum IL-18 responses to LPS increase after pretreatment with CpG-containing DNA. Compared to saline-pretreated controls, mice pretreated with CpG for two days produced 20-fold more serum IL-18 when challenged with lipopolysaccharide (LPS). In contrast, IFNgamma-deficiency or anti-IFNgamma pretreatment reduced CpG-expanded IL-18 responses to LPS by 67 and 83%, respectively. Mice pretreated with either IFNgamma or CpG comparably increased LPS-inducible serum IL-18 responses. LPS, compared to challenge with other TLR agonists, was best able to trigger high serum IL-18 levels in CpG-pretreated mice and this response was TLR4-dependent. CpG, compared to pretreatment with other TLR agonists, optimally expanded LPS-induced IL-18 responses that correlated with higher levels of circulating IFNgamma levels prior to LPS challenge. High-level serum IL-18 responses were caspase-1-dependent and P2X7 receptor-independent. We conclude that CpG promotes high-level IL-18 synthesis by an IFNgamma-dependent and IFNgamma-sufficient mechanism in vivo that is optimally triggered by LPS.  相似文献   

16.
LPS pretreatment of human pro-monocytic THP-1 cells induces tolerance to secondary LPS stimulation with reduced TNFalpha production. However, secondary stimulation with heat-killed Staphylococcus aureus (HKSa) induces priming as evidenced by augmented TNFalpha production. The pro-inflammatory cytokine, IFNgamma, also abolishes suppression of TNFalpha in LPS tolerance. The effect of LPS tolerance on HKSa and IFNgamma-induced inflammatory mediator production is not well defined. We hypothesized that LPS, HKSa and IFNgamma differentially regulate pro-inflammatory mediators and chemokine production in LPS-induced tolerance. THP-1 cells were pretreated for 24 h with LPS (100 ng/ml) or LPS (100 ng/ml) + IFNgamma (1 microg/ml). Cells were subsequently stimulated with LPS or HKSa (10 microg/ml) for 24 h. The production of the cytokines TNFalpha, IL-6, IL-1beta, and GMCSF and the chemokine IL-8 were measured in supernatants. LPS and HKSa stimulated TNFalpha (3070 +/- 711 pg/ml and 217 +/- 9 pg/ml, respectively) and IL-6 (237 +/- 8.9 pg/ml and 56.2 +/- 2.9 pg/ml, p < 0.05, n = 3, respectively) in control cells compared to basal levels (< 25 pg/ml). LPS induced tolerance to secondary LPS stimulation as evidenced by a 90% (p < 0.05, n = 3) reduction in TNFalpha. However, LPS pretreatment induced priming to HKSa as demonstrated by increased TNFalpha (2.7 fold, from 217 to 580 pg/ml, p < 0.05, n = 3 ). In contrast to suppressed TNFalpha, IL-6 production was augmented to secondary LPS stimulation (9 fold, from 237 to 2076 pg/ml, p < 0.01, n = 3) and also primed to HKSa stimulation (62 fold, from 56 to 3470 pg/ml, p < 0.01, n = 3). LPS induced IL-8 production and to a lesser extent IL-1beta and GMCSF. LPS pretreatment did not affect secondary LPS stimulated IL-8 or IL-1beta, although HKSa stimulation augmented both mediators. In addition, IFNgamma pretreatment reversed LPS tolerance as evidenced by increased TNFalpha levels while IL-6, IL-1beta, and GMCSF levels were further augmented. However, IL-8 production was not affected by IFNgamma. These data support our hypothesis of differential regulation of cytokines and chemokines in gram-negative- and gram-positive-induced inflammatory events. Such changes may have implications in the pathogenesis of polymicrobial sepsis.  相似文献   

17.
We have studied, using a telemetry system, the pyrogenic properties of recombinant murine interleukin-18 (rmIL-18) injected into the peritoneum of C57BL/6 mice. The effect of IL-18 was compared with the febrile response induced by human IL-1beta, lipopolysaccharide (LPS), and recombinant murine interferon-gamma (rmIFN-gamma). Both IL-1beta and LPS induced a febrile response within the first hour after the intraperitoneal injection, whereas rmIL-18 (10-200 microg/kg) and rmIFN-gamma (10-150 microg/kg) did not cause significant changes in the core body temperature of mice. Surprisingly, increasing doses of IL-18, injected intraperitoneally 30 min before IL-1beta, significantly reduced the IL-1beta-induced fever response. In contrast, the same pretreatment with IL-18 did not modify the febrile response induced by LPS. IFN-gamma does not seem to play a role in the IL-18-mediated attenuation of IL-1beta-induced fever. In fact, there was no elevation of IFN-gamma in the serum of mice treated with IL-18, and a pretreatment with IFN-gamma did not modify the fever response induced by IL-1beta. We conclude that IL-18 is not pyrogenic when injected intraperitoneally in C57BL/6 mice. Furthermore, a pretreatment with IL-18, 30 min before IL-1beta, attenuates the febrile response induced by IL-1beta.  相似文献   

18.
Mice 6 days after thermal injury (TI-mice) did not respond to lipopolysaccharide (LPS) stimulation for production of serum interleukin 12 (IL-12; 2 h after LPS stimulation, <20 pg/ml in TI-mice; 1091+/-162 pg/ml in normal mice). However, 2 h after LPS stimulation, 1456+/-118 pg/ml of IL-12 were demonstrated in sera of TI-mice previously treated with a 10 mg/kg i.p. dose of glycyrrhizin (GR). IL-12 was not induced by LPS in sera of normal mice inoculated with burn-associated type 2 T cells (IL-4/IL-10-producing CD8+CD11b+TCRgamma/delta+T cells isolated from spleens of TI-mice). However, IL-12 production was induced by LPS in sera of these mice previously treated with GR or a mixture of monoclonal antibodies (mAbs) for type 2 cytokines. Also, IL-12 production was induced by LPS in TI-mice inoculated with CD4+T cells from spleens of GR-treated normal mice (GR-CD4+T cells, 5x10(6)cells/mouse). Since GR-CD4+T cells have been shown to be antagonistic cells against production of type 2 cytokines by burn-associated type 2 T cells, these results indicate that IL-12 unresponsiveness shown in TI-mice is recovered by GR through the regulation of burn-associated type 2 T cell responses.  相似文献   

19.
Although recently polymorphonuclear leukocytes (PMN) have been identified as producers of IL-1 beta in response to LPS and granulocyte/monocyte colony stimulating factor, little is known regarding the ability of other cytokines to induce the production of IL-1 beta in the PMN. Inasmuch as IL-1 and TNF have been shown to be important priming agents, as well as agents that induce migration of PMN, we investigated their effect on IL-1 beta gene expression in human peripheral blood PMN. In the present study, we demonstrate that human peripheral blood PMN produce IL-1 beta in response to IL-1 alpha, IL-1 beta, and TNF-alpha. Control (unstimulated) human PMN had virtually undetectable levels of IL-1 beta mRNA. Either IL-1 beta or TNF, induced PMN to transiently express IL-1 beta mRNA with peak expression at 1 h, returning to untreated levels by 2 h. A dose response indicated that as little as 0.05 ng/ml of IL-1 beta or TNF resulted in IL-1 beta induction, with maximal effects at 1 ng/ml of IL-1 beta and 5 ng/ml of TNF. IL-1 alpha or IL-1 beta exhibited similar dose responses in IL-1 beta mRNA induction. Inasmuch as cytokines have been shown to have synergistic effects in cell function studies, we induced PMN with a combination of maximally effective doses of TNF plus IL-1 beta. They demonstrated a cooperative effect on IL-1 beta gene expression, in that mRNA levels were sustained for three hours. IL-1 beta Ag expression, as measured by ELISA, paralleled IL-1 beta mRNA expression with cell associated peak levels at 2 to 4 h. IL-1 beta Ag levels in PMN lysates and supernatants correlated with IL-1 beta mRNA levels, i.e., TNF + IL-1 greater than TNF greater than IL-1. Thus, these studies represent the first demonstration of IL-1 and TNF induction of IL-1 beta gene expression in the PMN. Furthermore, the time course of induction is unique to the PMN, with peak induction of mRNA at 1 h, which is consistent with the short lived nature of these cells in inflammatory lesions.  相似文献   

20.
Dendritic cells (DCs) are major antigen-presenting cells of the immune system, which need to be activated in order to initiate an immune response. Here, we describe the immunostimulatory effects on human monocyte-derived DCs observed upon infection with Listeria monocytogenes or after treatment with listerial lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively. All stimuli caused upregulation of costimulatory molecules, induced T-cell proliferative responses and secretion of cytokines in vitro. Infection of DCs with L. monocytogenes induced release of interleukin (IL)-12 and IL-18. In contrast treatment with purified listerial LTA yielded high levels of IL-18 release, but only minimal IL-12 production. Treatment of DCs with LPS conversely induced significant amounts of IL-12 production, but no IL-18. The release of both stimulating cytokines IL-12 and IL-18 upon infection with entire bacteria suggests that attenuated strains of L. monocytogenes may be a valuable tool for subunit vaccine delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号