首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed by (31)P MRS the relationship between kinetic parameters of phosphocreatine (PCr) recovery and end-of-exercise status under conditions of moderate and large acidosis induced by dynamic exercise. Thirteen healthy subjects performed muscular contractions at 0.47 Hz (low frequency, moderate exercise) and 0.85 Hz (high frequency, heavy exercise). The rate constant of PCr resynthesis (k(PCr)) varied greatly among subjects (variation coefficients: 43 vs. 57% for LF vs. HF exercises) and protocols (k(PCr) values: 1.3+/-0.5 min(-1) vs. 0.9+/-0.5 min(-1) for LF vs. HF exercises, P<0.03). The large intersubject variability can be captured into a linear relationship between k(PCr), the amount of PCr consumed ([PCr(2)]) and pH reached at the end of exercise (pH(end)) (k(PCr)=-3.3+0.7 pH(end)-0.03 [PCr(2)]; P=0.0007; r=0.61). This dual relationship illustrates that mitochondrial activity is affected by end-of-exercise metabolic status and allows reliable comparisons between control, diseased and trained muscles. In contrast to k(PCr), the initial rate of PCr recovery and the maximum oxidative capacity were always constant whatever the metabolic conditions of end-of-exercise and can then be additionally used in the identification of dysfunctions in the oxidative metabolic pathway.  相似文献   

2.
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.  相似文献   

3.
The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.  相似文献   

4.
During heavy-intensity exercise, the mechanisms responsible for the continued slow decline in phosphocreatine concentration ([PCr]) (PCr slow component) have not been established. In this study, we tested the hypothesis that a reduced intracellular acidosis would result in a greater oxidative flux and, consequently, a reduced magnitude of the PCr slow component. Subjects (n = 10) performed isotonic wrist flexion in a control trial and in an induced alkalosis (Alk) trial (0.3g/kg oral dose of NaHCO3, 90 min before testing). Wrist flexion, at a contraction rate of 0.5 Hz, was performed for 9 min at moderate- (75% of onset of acidosis; intracellular pH threshold) and heavy-intensity (125% intracellular pH threshold) exercise. 31P-magnetic resonance spectroscopy was used to measure intracellular [H+], [PCr], [Pi], and [ATP]. The initial recovery data were used to estimate the rate of ATP synthesis and oxidative flux at the end of heavy-intensity exercise. In repeated trials, venous blood sampling was used to measure plasma [H+], [HCO3-], and [Lac-]. Throughout rest and exercise, plasma [H+] was lower (P < 0.05) and [HCO3-] was elevated (P < 0.05) in Alk compared with control. During the final 3 min of heavy-intensity exercise, Alk caused a lower (P < 0.05) intracellular [H+] [246 (SD 117) vs. 291 nmol/l (SD 129)], a greater (P < 0.05) [PCr] [12.7 (SD 7.0) vs. 9.9 mmol/l (SD 6.0)], and a reduced accumulation of [ADP] [0.065 (SD 0.031) vs. 0.098 mmol/l (SD 0.059)]. Oxidative flux was similar (P > 0.05) in the conditions at the end of heavy-intensity exercise. In conclusion, our results are consistent with a reduced intracellular acidosis, causing a decrease in the magnitude of the PCr slow component. The decreased PCr slow component in Alk did not appear to be due to an elevated oxidative flux.  相似文献   

5.
Sensory neurons can detect ischemia and transmit pain from various organs. Whereas the primary stimulus in ischemia is assumed to be acidosis, little is known about how the inevitable metabolic challenge influences neuron function. In this study we have investigated the effects of anoxia, aglycemia, and acidosis upon intracellular Mg(2+) concentration [Mg(2+)](i) and intracellular pH (pH(i)) in isolated sensory neurons. Anoxia, anoxic aglycemia, and acidosis all caused a rise in [Mg(2+)](i) and a fall in pH(i). The rise in [Mg(2+)](i) in response to acidosis appears to be due to H(+) competing for intracellular Mg(2+) binding sites. The effects of anoxia and aglycemia were mimicked by metabolic inhibition and, in a dorsal root ganglia (DRG)-derived cell line, the rise in [Mg(2+)](i) during metabolic blockade was closely correlated with fall in intracellular ATP concentration ([ATP](i)). Increase in [Mg(2+)](i) during anoxia and aglycemia were therefore assumed to be due to MgATP hydrolysis. Even brief periods of anoxia (<3 min) resulted in rapid internal acidosis and a rise in [Mg(2+)](i) equivalent to a decline in MgATP levels of 15-20%. With more prolonged anoxia (20 min) MgATP depletion is estimated to be around 40%. With anoxic aglycemia, the [Mg(2+)](i) rise occurs in two phases: the first beginning almost immediately and the second after an 8- to 10-min delay. Within 20 min of anoxic aglycemia [Mg(2+)](i) was comparable to that observed following complete metabolic inhibition (dinitrophenol + 2-deoxyglucose, DNP + 2-DOG) indicating a near total loss of MgATP. The consequences of these events therefore need to be considered in the context of sensory neuron function in ischemia.  相似文献   

6.
The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid, causing the release of a proton and the formation of the acid salt sodium lactate. On the basis of this explanation, if the rate of lactate production is high enough, the cellular proton buffering capacity can be exceeded, resulting in a decrease in cellular pH. These biochemical events have been termed lactic acidosis. The lactic acidosis of exercise has been a classic explanation of the biochemistry of acidosis for more than 80 years. This belief has led to the interpretation that lactate production causes acidosis and, in turn, that increased lactate production is one of the several causes of muscle fatigue during intense exercise. This review presents clear evidence that there is no biochemical support for lactate production causing acidosis. Lactate production retards, not causes, acidosis. Similarly, there is a wealth of research evidence to show that acidosis is caused by reactions other than lactate production. Every time ATP is broken down to ADP and P(i), a proton is released. When the ATP demand of muscle contraction is met by mitochondrial respiration, there is no proton accumulation in the cell, as protons are used by the mitochondria for oxidative phosphorylation and to maintain the proton gradient in the intermembranous space. It is only when the exercise intensity increases beyond steady state that there is a need for greater reliance on ATP regeneration from glycolysis and the phosphagen system. The ATP that is supplied from these nonmitochondrial sources and is eventually used to fuel muscle contraction increases proton release and causes the acidosis of intense exercise. Lactate production increases under these cellular conditions to prevent pyruvate accumulation and supply the NAD(+) needed for phase 2 of glycolysis. Thus increased lactate production coincides with cellular acidosis and remains a good indirect marker for cell metabolic conditions that induce metabolic acidosis. If muscle did not produce lactate, acidosis and muscle fatigue would occur more quickly and exercise performance would be severely impaired.  相似文献   

7.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

8.
The power spectral analysis of R-R interval variability (RRV) has been estimated by means of an autoregressive method in seven sedentary males at rest, during steady-state cycle exercise at 21 percent maximal oxygen uptake (%VO2max), SEM 2%, 49% VO2max, SEM 2% and 70% VO2max, SEM 2% and during recovery. The RRV, i.e. the absolute power of the spectrum, decreased 10, 100 and 500 times in the three exercise intensities, returning to resting value during recovery. In the RRV power spectrum three components have been identified: (1) high frequency peak (HF), central frequency about 0.24 Hz at rest and recovery, and 0.28 Hz, SEM 0.02, 0.37 Hz, SEM 0.03 and 0.48 Hz, SEM 0.06 during the three exercise intensities, respectively; (2) low frequency peak (LF), central frequency about 0.1 Hz independent of the metabolic state; (3) very low frequency component (VLF), less than 0.05 Hz, no peak observed. The HF peak power, as a percentage of the total power (HF%), averaged 16%, SEM 5% at rest and did not change during exercise, whereas during recovery it decreased to 5%-10%. The LF% and VLF% were about 50% and 35% at rest and during low exercise intensity, respectively. At higher intensities, LF% decreased to 16% and VLF% increased to 70%. During recovery a return to resting values occurred. The HF component may reflect the increased respiratory rate and the LF peak changes the resetting of the baroreceptor reflex with exercise. The hypothesis is made that VLF fluctuations in heart rate might be partially mediated by the sympathetic system.  相似文献   

9.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

10.
In cardiomyocytes, a major decrease in the level of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) can severely impair systolic and diastolic functions. In mice with cardiomyocyte-specific conditional excision of the Serca2 gene (SERCA2 KO), end-stage heart failure developed between four and seven weeks after gene deletion combined with [Na(+)](i) elevation and intracellular acidosis. In this study, to investigate the underpinning changes in Ca(2+) dynamics and metabolic homeostasis, we developed data-driven mathematical models of Ca(2+) dynamics in the ventricular myocytes of the control, four-week, and seven-week SERCA2 knockout (KO) mice. The seven-week KO model showed that elevated [Na(+)](i) was due to increased Na(+) influxes through the Na(+)/Ca(2+) exchanger (NCX) and the Na(+)/H(+) exchanger, with the latter exacerbated by intracellular acidosis. Furthermore, NCX upregulation in the seven-week KO model resulted in increased ATP consumption for ion transport. Na(+) accumulation in the SERCA KO due to NCX upregulation and intracellular acidosis potentially play a role in the development of heart failure, by initiating a reinforcing cycle involving: a mismatch between ATP demand and supply; an increasingly compromised metabolism; a decreased pH(i); and, finally, an even greater [Na(+)](i) elevation.  相似文献   

11.
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.  相似文献   

12.
Sex differences in the prevalence of inflammatory disorders exist, perhaps due to sex differences in cellular mechanisms that contribute to proinflammatory cytokine activity. This study analyzed sex differences of monocyte intracellular expression of IL-6 and its associations with reproductive hormones and autonomic mechanisms in 14 matched pairs of men and women (n = 28). Monocyte intracellular IL-6 production was repeatedly assessed over two circadian periods. Sympathetic balance was estimated by heart rate variability and the ratio of power in the low-frequency (LF) to high-frequency (HF); vagal tone was indexed by the power of HF component. As compared to men, women showed greater monocyte expression of IL-6 across the circadian period. In addition, women showed lower sympathetic balance (LF/HF ratio), and greater levels of vagal tone (HF power). In women, but not men, sympathovagal balance was negatively associated with monocyte IL-6 expression, whereas vagal tone was positively associated with production of this cytokine. Levels of reproductive hormones were not related to monocyte IL-6 expression. The marked increase in monocyte expression of interleukin-6 in women has implications for understanding sex differences in risk of inflammatory disorders. Additionally, these data suggest that sex differences in sympathovagal balance or vagal tone may be a pathway to explain sex differences in IL-6 expression. Interventions that target autonomic mechanisms might constitute new strategies to constrain IL-6 production with impacts on inflammatory disease risk in women.  相似文献   

13.
The evolution of phosphometabolites was determined in the abdominal muscle of a crustacean Palaemon serratus during intermittent electrical stimulation at 1, 2 and 4 Hz and during natural escape behavior.The changes in AMP, IMP, phosphomonoesters, adenylate energy charge and ATP/ADP ratio were not affected by the frequency of electrical stimulation. On the contrary, changes in ATP, ADP and sum of adenylates depended on the stimulation protocol: degradation of ATP and accumulation of ADP were not significantly different after electrical stimulation at 2 and 4 Hz as compared to manual stimulation, but differed from the 1 Hz stimulation protocol values. The sum of adenylates decreased similarly after 2 and 4 Hz stimulation and manual protocols. The different exercise protocols did not produce any changes in AMP and IMP accumulation, ATP/ADP ratio and A.E.C. After manual stimulation, the phosphomonoester and phosphoarginine concentrations were similar to the variations observed in the all electrical stimulation protocols, while the Pi levels were similar to the variations observed in the 4 Hz stimulation protocol only. The NMR index decrease was significantly higher after the manual and 4 Hz stimulation protocols.  相似文献   

14.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

15.
Elevated plasma HCO(3)(-) can improve exercise endurance in humans. This effect has been related to attenuation of the work-induced reduction in muscle pH, which is suggested to improve performance via at least two mechanisms: 1) less inhibition of muscle enzymes and 2) reduced opening of muscle K(ATP) channels with less ensuing reduction in excitability. Aiming at determining whether the ergogenic effect of HCO(3)(-) is related to effects on muscles, we examined the effect of elevating extracellular HCO(3)(-) from 25 to 40 mM (pH from 7.4 to 7.6) on fatigue, intracellular pH (pH(i)), and K(+) efflux in isolated rat skeletal muscles contracting isometrically. Fatigue induced by 30-Hz stimulation at 30 and 37 degrees C was similar between soleus muscles incubated in high and normal HCO(3)(-) concentrations. In extensor digitorum longus muscles stimulated at 60 Hz, elevated HCO(3)(-) did not affect fatigue at 30 degrees C. In soleus muscles, 30-Hz stimulation induced a approximately 0.2 unit reduction in pH(i), as determined by using the pH-sensitive probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. This reduction in pH(i) was not affected by elevated HCO(3)(-). Estimation of K(+) efflux using (86)Rb(+) showed that elevated HCO(3)(-) did not affect K(+) efflux at rest or during contractions. Similarly, other modifications of the intra- and extracellular pH had little effect on K(+) efflux during contraction. In conclusion, elevated extracellular HCO(3)(-) had no significant effect on muscle fatigue, pH(i), and K(+) efflux. These findings indicate that alternative mechanisms must be considered for the ergogenic effect of HCO(3)(-) observed in integral exercise studies.  相似文献   

16.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content.  相似文献   

17.
We tested the contribution of nucleoside triphosphate (NTP) hydrolysis, ethanol, and organic acid syntheses, and H(+)-pump ATPases activity in the acidosis of anoxic sycamore (Acer pseudoplatanus) plant cells. Culture cells were chosen to alter NTP pools and fermentation with specific nutrient media (phosphate [Pi]-deprived and adenine- or glycerol-supplied). In vivo (31)P- and (13)C-nuclear magnetic resonance (NMR) spectroscopy was utilized to noninvasively measure intracellular pHs, Pi, phosphomonoesters, nucleotides, lactate, and ethanol. Following the onset of anoxia, cytoplasmic (cyt) pH (7.5) decreased to 6.8 within 4 to 5 min, whereas vacuolar pH (5.7) and external pH (6.5) remained stable. The NTP pool simultaneously decreased from 210 to <20 nmol g(-1) cell wet weight, whereas nuceloside diphosphate, nucleoside monophosphate, and cyt pH increased correspondingly. The initial cytoplasmic acidification was at a minimum in Pi-deprived cells containing little NTP, and at a maximum in adenine-incubated cells showing the highest NTP concentration. Our data show that the release of H(+) ions accompanying the Pi-liberating hydrolysis of NTP was the principal cause of the initial cyt pH drop and that this cytoplasmic acidosis was not overcome by H(+) extrusion. After 15 min of anoxia, a partial cyt-pH recovery observed in cells supplied with Glc, but not with glycerol, was attributed to the H(+)-consuming ATP synthesis accompanying ethanolic fermentation. Following re-oxygenation, the cyt pH recovered its initial value (7.5) within 2 to 3 min, whereas external pH decreased abruptly. We suggest that the H(+)-pumping ATPase located in the plasma membrane was blocked in anoxia and quickly reactivated after re-oxygenation.  相似文献   

18.
19.
Metabolic alkalosis induced by sodium bicarbonate (NaHCO(3)) ingestion has been shown to enhance performance during brief high-intensity exercise. The mechanisms associated with this increase in performance may include increased muscle phosphocreatine (PCr) breakdown, muscle glycogen utilization, and plasma lactate (Lac(-)(pl)) accumulation. Together, these changes would imply a shift toward a greater contribution of anaerobic energy production, but this statement has been subject to debate. In the present study, subjects (n = 6) performed a progressive wrist flexion exercise to volitional fatigue (0.5 Hz, 14-21 min) in a control condition (Con) and after an oral dose of NaHCO(3) (Alk: 0.3 g/kg; 1.5 h before testing) to evaluate muscle metabolism over a complete range of exercise intensities. Phosphorus-31 magnetic resonance spectroscopy was used to continuously monitor intracellular pH, [PCr], [P(i)], and [ATP] (brackets denote concentration). Blood samples drawn from a deep arm vein were analyzed with a blood gas-electrolyte analyzer to measure plasma pH, Pco(2), and [Lac(-)](pl), and plasma [HCO(3)(-)] was calculated from pH and Pco(2). NaHCO(3) ingestion resulted in an increased (P < 0.05) plasma pH and [HCO(3)(-)] throughout rest and exercise. Time to fatigue and peak power output were increased (P < 0.05) by approximately 12% in Alk. During exercise, a delayed (P < 0.05) onset of intracellular acidosis (1.17 +/- 0.26 vs. 1.28 +/- 0.22 W, Con vs. Alk) and a delayed (P < 0.05) onset of rapid increases in the [P(i)]-to-[PCr] ratio (1.21 +/- 0.30 vs. 1.30 +/- 0.30 W) were observed in Alk. No differences in total [H(+)], [P(i)], or [Lac(-)](pl) accumulation were detected. In conclusion, NaHCO(3) ingestion was shown to increase plasma pH at rest, which resulted in a delayed onset of intracellular acidification during incremental exercise. Conversely, NaHCO(3) was not associated with increased [Lac(-)](pl) accumulation or PCr breakdown.  相似文献   

20.
Previous work from our laboratory using heart rate variability (HRV) has demonstrated that women before menopause have a more dominant parasympathetic and less effective sympathetic regulations of heart rate compared with men. Because it is still not clear whether normal or preeclamptic pregnancy coincides with alternations in the autonomic functions, we evaluated the changes of HRV in 17 nonpregnant, 17 normotensive pregnant, and 11 preeclamptic women who were clinically diagnosed without history of diabetic neuropathy, cardiac arrhythmia, and other cardiovascular diseases. Frequency-domain analysis of short-term, stationary R-R intervals was performed to evaluate the total variance, low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), ratio of LF to HF (LF/HF), and LF in normalized units (LF%). Natural logarithm transformation was applied to variance, LF, HF, and LF/HF for the adjustment of the skewness of distribution. We found that the normal pregnant group had a lower R-R value and HF but had a higher LF/HF and LF% compared with the nonpregnant group. The preeclamptic group had lower HF but higher LF/HF compared with either the normal pregnant or nonpregnant group. Our results suggest that normal pregnancy is associated with a facilitation of sympathetic regulation and an attenuation of parasympathetic influence of heart rate, and such alterations are enhanced in preeclamptic pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号