首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cyclic AMP has been shown essential for activation of sperm motility. When immotile hamster caudal epididymal spermatozoa were suspended in a Ca2+-deficient solution, they showed a sluggish motility. Spermatozoa were demembranated and transferred to an ATP-containing reactivation solution. Demembranated spermatozoa did not exhibit reactivated flagellar movement unless cAMP was added. Conversely, when the immotile epididymal spermatozoa were suspended in a Ca2+-containing solution, they were immediately activated to display a vigorous motility; demembranated spermatozoa also exhibited reactivated flagellar movement in the reactivation solution without cAMP. Further investigation of microtubule sliding properties revealed that the effects of Ca2+ on live spermatozoa were identical with the effects of cAMP on demembranated spermatozoa both in microtubule sliding velocity and sliding disintegration pattern. Moreover, a 36-kDa flagellar protein was found to be phosphorylated in a cAMP-dependent manner and coupled to the motility activation. A polyclonal antibody against this protein was developed and showed specific immunolocalization and significant inhibitory effects on microtubule sliding disintegration. These results indicate that extracellular Ca2+ owes its effect to triggering intracellular cAMP production, and cAMP-dependent phosphorylation of a 36-kDa phosphoprotein activates hamster sperm motility through regulation of microtubule sliding properties.  相似文献   

2.
Specific effects of both in vivo activation and in vitro activation by cAMP-dependent phosphorylation on bending wave parameters of demembranated, reactivated, tunicate (Ciona intestinalis) and sea urchin (Lytechinus pictus) sperm flagella can be reversed by exposure to protein phosphatase. The effects of protein phosphatase incubation can be imitated by inclusion of LiCl in the reactivation solutions. The primary effect of cAMP-dependent phosphorylation appears to be activation of a regulatory mechanism controlling flagellar oscillation, rather than activation of the active sliding mechanism. Lithium appears to act on the same regulatory mechanism.  相似文献   

3.
Inaba K 《Zoological science》2003,20(9):1043-1056
Sperm motility is generated by a highly organized, microtubule-based structure, called the axoneme, which is constructed from approximately 250 proteins. Recent studies have revealed the molecular structures and functions of a number of axonemal components, including the motor molecules, the dyneins, and regulatory substructures, such as radial spoke, central pair, and other accessory structures. The force for flagellar movement is exerted by the sliding of outer-doublet microtubules driven by the molecular motors, the dyneins. Dynein activity is regulated by the radial spoke/central pair apparatus through protein phosphorylation, resulting in flagellar bend propagation. Prior to fertilization, sperm exhibit dramatic motility changes, such as initiation and activation of motility and chemotaxis toward the egg. These changes are triggered by changes in the extracellular ionic environment and substances released from the female reproductive tract or egg. After reception of these extracellular signals by specific ion channels or receptors in the sperm cells, intracellular signals are switched on through tyrosine protein phosphorylation, Ca2+, and cyclic nucleotide-dependent pathways. All these signaling molecules are closely arranged in each sperm flagellum, leading to efficient activation of motility.  相似文献   

4.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

5.
To understand the mechanism regulating spermatozoa motility, it is important to investigate the mechanism regulating the conversion of microtubule sliding into flagellar bending. Therefore, we analyzed microtubule sliding and its conversion into flagellar bending using a demembranated spermatozoa model in which microtubule sliding and flagellar bending could be analyzed separately by treating the demembranated spermatozoa with and without dithiothreitol, respectively. Using this model, we examined the roles of cAMP and its target molecules in regulating flagellar bending and microtubule sliding. Although flagellar bending did not occur in the absence of cAMP, microtubule extrusion occurred without it, suggesting that cAMP is necessary for the conversion of microtubule sliding into flagellar bending, but not for microtubule sliding itself. The target of cAMP for regulating flagellar bending was not cAMP-dependent protein kinase (PKA), since flagellar bending was still observed in the spermatozoa treated with a PKA-specific inhibitor. Alternatively, the Epac/Rap pathway may be the target. Epac2 and Rap2 were detected in hamster spermatozoa using immunoblotting. Since Rap2 is a GTPase, we investigated the flagellar bending of demembranated spermatozoa treated with GTPgammaS. The treatment markedly increased the beat frequency and bending rate. These results suggest that cAMP activates the Epac/Rap pathway to regulate the conversion of microtubule sliding into flagellar bending.  相似文献   

6.
The 24p3 protein is a 25 kDa glycoprotein that is secreted into the uterine fluid during the proestrous phase of mice. We assessed the effects on spermatozoa motility and on the functions of mouse spermatozoa using the computer-assisted sperm analysis method, cytochemical staining and detection of the protein tyrosine phosphorylation pattern. Compared with the control cells, sperm motility was stimulated by the addition of 24p3 protein into the medium. Introducing 24p3 protein enhanced progressive motility but did not promote the appearance of hyperactivated movement. The presence of 24p3 protein in the medium did not allow the cells to undergo the capacitated protein tyrosine phosphorylation pattern and acrosome reaction. The tyrosine phosphorylation pattern shows phosphoproteins in the range of Mr 50000–106000 correlated with the sperm progressive motility after the addition of 24p3 protein into the medium. Using flow cytometry, we assessed the changes in the intracellular pH and measured the intracellular cAMP concentration with an immunodetection kit. The results indicated that the elevation in intracellular pH from 6.67 to 6.89, increase of intracellular cAMP accumulation, and protein tyrosine phosphorylation might be the factors in enhancement of sperm motility as the 24p3 protein bound to the spermatozoa. The 24p3 protein may have a role in regulating flagellar motility.  相似文献   

7.
Speract, an egg-derived sperm-activating peptide, induces changes in intracellular Ca2+, Na+, pH, cAMP, cGMP, and membrane potential in sperm of the sea urchin Strongylocentrotus purpuratus. Ca2+ is a key regulator of motility in all sperm and, in many marine species, is required for generating turns interspersed with straighter swimming paths that are essential for chemotaxis towards the egg. We show that speract triggers a train of increases in flagellar Ca2+, and that each individual Ca2+ fluctuation induces a transient increase in flagellar asymmetry that leads to a turn. We also find that modifying the amplitude, duration and interval between individual Ca2+ fluctuations by treating sperm with niflumic acid, an inhibitor of Ca2+-activated Cl(-) channels, correspondingly alters the properties of the sperm turns. We conclude that Ca2+ entry through a fast flagellar pathway not only induces sperm turns, but the kinetics of Ca2+ entry may shape the nature of these turns, and that these kinetics are tuned by other channels, possibly including Cl(-) channels. In addition, the speract-induced changes in sperm motility closely resemble those seen during chemotaxis in other marine organisms, yet speract is not a chemoattractant. This implies the Ca2+-induced motility changes are necessary but not sufficient for chemotaxis.  相似文献   

8.
Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca(2+). We used stroboscopic fluorescence imaging to measure intracellular Ca(2+) concentration ([Ca(2+)]i) in the flagella of swimming sea urchin sperm. Uncaging of cyclic GMP induced Ca(2+) entry via at least two distinct pathways, and we identified a nimodipine-sensitive pathway, compartmentalized in the flagella, as a key regulator of flagellar bending and directed motility changes. We found that, contrary to current models, the degree of flagellar bending does not vary in proportion to the overall [Ca(2+)]i. Instead we propose a new model whereby flagella bending is increased by Ca(2+) flux through the nimodipine-sensitive pathway, and is unaffected by [Ca(2+)]i increases through alternative pathways.  相似文献   

9.
Demembranated spermatozoa of Ciona do not become motile when provided with MgATP, unless their motility is activated in vivo before demembranation or unless the demembranated spermatozoa are activated in vitro with cAMP or with the catalytic subunit of a cAMP-dependent protein kinase. CAMP causes a greater than fivefold enhancement of 32P incorporation by demembranated spermatozoa. Analysis by one-dimensional PAGE and autoradiography shows several axonemal protein bands that become 32P-labeled during in vitro activation with cAMP and identifies protein bands whose labeling is specifically reduced if motility of the spermatozoa is activated before demembranation, suggesting that these proteins also become phosphorylated during activation of motolity in vivo. These phosphorylated proteins appear to include dynein heavy-chain components, but axonemal tubulin is not phosphorylated. Partially phosphorylated spermatozoa can be activated by an increase in KCI concentration, which appears to dissociate one phosphorylated component from the axoneme.  相似文献   

10.
Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation.  相似文献   

11.
cAMP and calcium are two important regulators of sperm flagellar motility. cAMP stimulates sperm motility by activating cAMP-dependent protein kinase and catalyzing the phosphorylation of sperm proteins. The stimulation of sperm motility by cAMP appears to be at two different levels. Evidence has been presented to suggest that cAMP-dependent phosphorylations may be required in order for motility to be initiated. In addition, cAMP-dependent phosphorylation appears to modulate specific parameters of motility resulting in higher beat frequency or greater wave amplitude. Calcium, on the other hand, when elevated intracellularly to 10(-6) M or higher, inhibits flagellar motility. The calcium-binding protein, calmodulin, appears to mediate a large number of effects of calcium on motility. Evidence suggests that calcium-calmodulin may be involved at the level of the membrane to pump calcium out of the flagellum. In addition, calcium-calmodulin may be involved in the control of axonemal function by regulating dynein ATPase and myosin light chain kinase activities. The identification of cAMP-dependent protein kinase, calmodulin and myosin light chain kinase in the sperm head suggests that cAMP and calcium-dependent phosphorylations are also involved in the control of the fertilization process, i.e., the acrosome reaction, in a manner similar to that known for the control of stimulus/secretion coupling. Finally, the effects of cAMP on flagellar motility are mediated by protein phosphorylation while the effects of calcium on motility are also in part, mediated by effects on protein phosphorylation.  相似文献   

12.
Sea urchin spermatozoa demembranated with Triton X-100 in the presence of EGTA, termed potentially asymmetric, generate asymmetric bending waves in reactivation solutions containing EGTA. After they are converted to the potentially symmetric condition by extraction with Triton and millimolar Ca++, they generate symmetric bending waves in reactivation solutions containing EGTA. In the presence of EGTA, their asymmetry can be restored by addition of brain calmodulin or the concentrated supernatant obtained from extraction with Triton and millimolar Ca++. These extracts contain calmodulin, as assayed by gel electrophoresis, radioimmunoassay, activation of brain phosphodiesterase, and Ca++-dependent binding of asymmetry-restoring activity to a trifluorophenothiazine-affinity resin. Conversion to the potentially symmetric condition can also be achieved with trifluoperazine substituted for Triton during the exposure to millimolar Ca++, which suggests that the calmodulin-binding activity of Triton is important for this conversion. These observations suggest that the conversion to the potentially symmetric condition is the result of removal of some of the axonemal calmodulin and provide additional evidence for axonemal calmodulin as a mediator of the effect of Ca++ on the asymmetry of flagellar bending.  相似文献   

13.
Initiation of flagellar motility in spermatozoa of the rainbow trout, Salmo gairdneri, is closely related to phosphorylation of a protein of molecular mass 15 kDa (Morisawa, M., and Hayashi, H. (1986) Biomed. Res. 6, 181-184). We have been able to solubilize the protein and its kinase and then construct an assay system in vitro for the phosphorylation of the 15-kDa protein. In vitro, the protein was phosphorylated in a cAMP-dependent manner. The phosphorylation absolutely required the presence of Mg2+ ions. at millimolar concentrations, but not of Ca2+ ions. The amino acid residue which was phosphorylated in the 15-kDa protein was tyrosine. The 15-kDa protein was purified to near homogeneity by affinity chromatography on a column of adenosine nucleotides conjugated to Eupergit and ion-exchange chromatography on DEAE-cellulose. The effects of synthetic inhibitors of protein kinase on the phosphorylation of the 15-kDa protein were also studied.  相似文献   

14.
Calmodulin concentration and cAMP-dependent protein kinase activity were simultaneously determined on ram spermatozoa collected by cannulation of successive segments of the epididymal tubule. Epididymal transit was characterized on one hand by an overall decrease in the calmodulin level and on the other by a dramatic rise in the cAMP-dependent protein kinase activity. In contrast to the calmodulin level, the cAMP-dependent protein kinase activity was correlated with the acquisition of flagellar beat. No further alterations in the level of these two proteins could be detected as spermatozoa acquired progressive motility.  相似文献   

15.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

16.
Sea bass spermatozoa are maintained immotile in the seminal fluid, but initiate swimming for 45 s at 20 degrees C, immediately after dispersion in a hyperosmotic medium (1100 mOsm kg-1). The duration of this motile period could be extended by a reduction of the amplitude of the hyperosmotic shock. Five seconds after the initiation of motility, 94.4 +/- 1.8% of spermatozoa were motile with a swimming velocity of 141.8 +/- 1.2 microns s-1, a flagellar beat frequency of 60 Hz and a symmetric type of flagellar swimming, resulting in linear tracks. Velocity, flagellar beat frequency, percentage of motile cells and trajectory diameter decreased concomitantly throughout the swimming phase. After 30 s of motility, the flagellar beat became asymmetric, leading to circular trajectories. Ca2+ modulated the swimming pattern of demembranated spermatozoa, suggesting that the asymmetric waves produced by intact spermatozoa after 30 s of motility were induced by an accumulation of intracellular Ca2+. Moreover, increased ionic strength in the reactivation medium induced a dampening of waves in the distal portion of the flagellum and, at high values, resulted in an arrest of wave generation in demembranated spermatozoa. In non-demembranated cells, the intracellular ATP concentration fell immediately after transfer to sea water. In contrast, the AMP content increased during the same period, while the ADP content increased slightly. In addition, several morphological changes affected the mitochondria, chromatin and midpiece. These results indicate that the short swimming period of sea bass spermatozoa is controlled by energetic and cytoplasmic ionic conditions and that it is limited by osmotic stress, which induces marked changes in cell morphology.  相似文献   

17.
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.  相似文献   

18.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

19.
Echinoderm sperm use cyclic nucleotides (CNs) as essential second messengers to locate and swim towards the egg. Sea urchin sperm constitute a rich source of membrane-bound guanylyl cyclase (mGC), which was first cloned from sea urchin testis by the group of David Garbers. His group also identified speract, the first sperm-activating peptide (SAP) to be isolated from the egg investment (or egg jelly). This decapeptide stimulates sperm mGC causing a fast transient increase in cGMP that triggers an orchestrated set of physiological responses including: changes in: membrane potential, intracellular pH (pHi), intracellular Ca(2+) concentration ([Ca(2+)]i) and cAMP levels. Evidence from several groups indicated that cGMP activation of a K(+) selective channel was the first ion permeability change in the signaling cascade induced by SAPs, and recently the candidate gene was finally identified. Each of the 4 repeated, 6 trans-membrane segments of this channel contains a cyclic nucleotide binding domain. Together they comprise a single polypeptide chain like voltage-gated Na(+) or Ca(2+) channels. This new type of channel, named tetraKCNG, appears to belong to the exclusive club of novel protein families expressed only in sperm and its progenitors. SAPs also induce fluctuations in flagellar [Ca(2+)]i that correlate with changes in flagellar form and regulate sperm trajectory. The motility changes depend on [Ca(2+)]i influx through specific Ca(2+) channels and not on the overall [Ca(2+)]i in the sperm flagellum. All cilia and flagella have a conserved axonemal structure and thus understanding how Ca(2+) regulates cilia and flagella beating is a fundamental question.  相似文献   

20.
To acquire fertilizing potential, mammalian spermatozoa must undergo capacitation and acrosome reaction. Our earlier work showed that pentoxifylline (0.45 mM), a sperm motility stimulant, induced an early onset of hamster sperm capacitation associated with tyrosine phosphorylation of 45-80 kDa proteins, localized to the mid-piece of the sperm tail. To assess the role of protein tyrosine phosphorylation in sperm capacitation, we used tyrphostin-A47 (TP-47), a specific protein tyrosine kinase inhibitor. The dose-dependent (0.1-0.5 mM) inhibition of tyrosine phosphorylation by TP-47 was associated with inhibition of hyperactivated motility and 0.5 mM TP-47-treated spermatozoa exhibited a distinct circular motility pattern. This was accompanied by hypo-tyrosine phosphorylation of 45-60 kDa proteins, localized to the principal piece of the intact-sperm and the outer dense fiber-like structures in detergent treated-sperm. Sperm kinematic analysis (by CASA) of spermatozoa, exhibiting circular motility (at 1st hr), showed lower values of straight line velocity, curvilinear velocity and average path velocity, compared to untreated controls. Other TP-47 analogues, tyrphostin-AG1478 and -AG1296, had no effect either on kinematic parameters or sperm protein tyrosine phosphorylation. These studies indicate that TP-47-induced circular motility of spermatozoa is compound-specific and that the tyrosine phosphorylation status of 45-60 kDa flagellum-localized proteins could be key regulators of sperm flagellar bending pattern, associated with the hyperactivation of hamster spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号