首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.  相似文献   

3.
4.
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of nonreplicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of β-glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, β-galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.  相似文献   

5.
Summary The regal pelargonium, ev. Dubonnet, was transformed using the disarmed Agrobacterium tumefaciens strains LBA4404 or EHA105 containing the binary vector pLN70. This plasmid carries on its T-DNA the rolC gene from Agrobacterium rhizogenes under control of the CaMV 35S promoter and the npt II selectable marker gene under a NOS promoter. Six independent transformants were produced and grouped according to their phenotypic characteristics. Two transformants showed the same phenotype as the untransformed control plants. Three transformants exhibited a dwarf phenotype and one displayed a super-dwarf phenotype. Southern hybridization analyses of the T-DNA left border region using a npt II probe showed that the six transformants all arose from independent transformation events. Northern hybridization analyses showed that the rolC gene was expressed only in the four transformants that exhibited a dwarf phenotype. Our data show that the phenotypic effects of rolC expression in regal pelargoniums include reductions in plant height, leaf area, petal area, and corolla length. Earlier flowering of the rolC transgenics by up to 22d was also observed.  相似文献   

6.
A chimeric gene encoding a ribozyme under the control of the cauliflower mosaic virus (CaMV) 35S promoter was introduced into transgenic tobacco plants. In vivo activity of this ribozyme, which was designed to cleave npt mRNA, was previously demonstrated by transient expression assays in plant protoplasts. The ribozyme gene was transferred into transgenic tobacco plants expressing an rbcS-npt chimeric gene as an indicator. Five double transformants out of sixteen exhibited a reduction in the amount of active NPT enzyme. To measure the amount of ribozyme produced, in the absence of its target, the ribozyme and target genes were separated by genetic segregation. The steady-state concentrations of ribozyme and target RNA were shown to be similar in the resulting single transformants. Direct evidence for a correlation between reduced npt gene expression and ribozyme expression was provided by crossing a plant containing only the ribozyme gene with a transgenic plant expressing the npt gene under control of the 35S promoter, i.e. the same promoter used to direct ribozyme expression. The expression of npt was reduced in all progeny containing both transgenes. Both steady-state levels of npt mRNA and amounts of active NPT enzyme are decreased. In addition, our data indicate that, at least in stable transformants, a large excess of ribozyme over target is not a prerequisite for achieving a significant reduction in target gene expression.  相似文献   

7.
A mutant broccoli ers (ethylene-response-sensor, boers) gene was obtained through site directed mutagenesis by replacing the isoleucine with phenylanine at the 62th residue. Two plasmids were constructed with this mutant gene regulated by the CaMV 35S promoter together with the nptII (kanamycin resistance gene) coding sequence and hpt (hygromycin resistance gene), respectively, for the pBI-mERSI62F and pSM1H-mERSI62F plasmids. Genetic transformation of the above two constructs via A. tumefaciens has been conducted to evaluate their effects on floret yellowing of harvested broccoli. Over a hundred transformants have been obtained on the selected cotyledon and hypocotyl explants. PCR and Southern analysis demonstrated integration of the transgenes in the transformants. However, through Southern hybridization, we determined that multi-site integration and DNA rearrangements had occurred in most transformants. Morphological and characteristic alternation such as slower plant growth, shorter plant height, easy branching, late bolting, and relative higher mortality in comparison with other transgenes were noted in some transformants. Transgenic lines showing delayed senescence in leaves and floral heads were obtained. The expression of transgene was confirmed by Northern blot analysis. The transformed progenies also showed ethylene insensitivity in seed germination, detached leaves and harvested florets. Nevertheless, in most lines, the yellowing was only delayed 1–2 days.  相似文献   

8.
We have optimized a procedure for genetic transformation of a major leafy vegetable crop, Amaranthus tricolor L., using epicotyl explant co-cultivation with Agrobacterium tumefaciens. Two disarmed A. tumefaciens strains EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT harboring the neomycin phosphotransferase II gene (nptII) and the β-glucuronidase gene (gus), were evaluated as vector systems. The former displayed a higher transforming efficiency. Several key factors influencing the transformation events were optimized. The highest percentage of transformed shoots (24.24%) was achieved using hand-pricked epicotyl explants, a 10-min infection period, with 100 μM acetosyringone-pretreated Agrobacterium culture corresponding to OD600???0.6 and diluted to 109 cells ml?1, followed by 4 d co-cultivation in the regeneration medium. Putative transformed explants capable of forming shoots were selected on medium supplemented with 75 μg?ml?1 kanamycin, and transient as well as stable glucuronidase expression was determined by histochemical analysis. From a total of 48 selected shoot lines derived from independent transformation events with epicotyl explants co-cultivated with EHA 105, 32 showed positive PCR amplification for both the nptII and gus genes. Germ line transformation and transgene stability were evident in progeny of primary transformed plants (T0). Among T1 seedlings of 12 selected transgenic plant lines, kanamycin-resistant and kanamycin-sensitive seedlings segregated in a ratio typical of the Mendelian monohybrid pattern (3:1) as verified by the chi-square (χ 2) test. Southern hybridization of genomic DNA from kanamycin-resistant T1 transgenic segregants to an nptII probe substantiated stable integration of the transgene. Neomycin phosphotransferase (NPTII) activity was detected in leaf protein extracts of selected T1 transgenic plants, thereby confirming stable expression of the nptII gene.  相似文献   

9.
Cotyledonary leaves of 9-d-old tomato (Lycopersicon esculentum Mill.) were co-cultivated with Agrobacterium tumefaciens GV 3101 harboring binary vector pBI101 containing kanamycin resistance gene (npt II) as selection marker. Murashige and Skoog (MS) inorganic salts with Gamborg’s B5 vitamins supplemented with optimized concentrations of zeatin riboside and indole-acetic acid resulted in enhanced regeneration efficiency. Under optimized conditions of plant regeneration, transformation frequency in cvs. Pusa Ruby, Pusa Uphar and DT-39 was greater than 37 %. Transformed shoots were selected on kanamycin medium and the presence of the transgene in the primary transformants was confirmed by PCR. Integration of the npt II gene in the tomato genome was further confirmed by Southern blot analysis. RT-PCR analysis using neomycin phospho-transferase (npt II) gene-specific primers confirmed the expression of the transgene in transgenic plants. Transformed plants were successfully transferred to phytotron, where these plants grew to maturity and produced flowers and fruits.  相似文献   

10.
11.
Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans’ AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22–25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternative protocol for generating transgenic plants of difficult-to-regenerate pigeon pea. Further, the protocol offers the option of doing away with a selection step in the procedure and so facilitates transformation, which is free of marker genes.Key words: Cajanus cajan, Transformation, Tissue culture-independent plant regeneration  相似文献   

12.
pBECKS     
A series of binary T-DNA vectors (pBECKS) has been created for use in theAgrobacterium-mediated genetic transformation of plants. The pBECKS series has corrected the undesirable features of the popular pBIN19 vector; the deleterious mutation within the coding sequence ofnptII has been amended and the cloning sites are now adjacent to the right border repeat in order to reduce the possibility of producing truncated sequences of novel genes within transformants. One set of vectors incorporates various combiantions of the marker genesgusA,C1/Lc,nptII,hph, andbar, for pursuit of early and stable transformation events. A set of constructs which contain deleted T-DNA borders in various combinations and display predictably altered efficacies for gene transfer has also been created. A modular set of vectors has been designed to facilitate the insertion and transfer of novel gene sequences by providing anptII-linked plant expression cassette orlacZ-multiple cloning site. A range of antibiotic resistance genes has been incorporated into the non-T-DNA part of the vectors in order to facilitate their selection across the range ofAgrobacterium virulence strains.  相似文献   

13.
Sandhu S  Altpeter F 《Plant cell reports》2008,27(11):1755-1765
Bahiagrass (Paspalum notatum Flugge) is an important turf and forage grass in the southeastern United States and other subtropical regions. Biolistic co-transfer of two unlinked, minimal, linear transgene expression cassettes (MCs) into the apomictic bahiagrass cv. Argentine was carried out to evaluate co-integration, quantify co-expression and analyze inheritance to apomictic seed progeny. Gold projectiles were coated with minimal unlinked nptII and bar expression cassettes in a 1:2 molar ratio. Complexity of transgene loci correlated with the amount of DNA used during gene transfer. Transgenic plants displayed a simple nptII integration pattern with 1–4 hybridization signals compared to the non-selected bar gene with 2 to more than 5 hybridization signals per transgenic line. Co-expression of unlinked nptII and bar genes occurred in 19 of the 20 co-transformed lines (95% co-expression frequency). Protein quantification revealed that several lines with complex integration patterns displayed a higher transgene expression than lines with simple transgene integration patterns. Several transgenic lines displayed hybridization signals indicative of concatemerization. Concatemers were confirmed following PCR amplification and sequence analysis of transgene loci. The obligate apomictic bahiagrass cv. Argentine produced uniform seed progeny without segregation of simple or complex transgene loci. NPTII- and PAT-ELISA, as well as herbicide application, confirmed stable expression of the nptII and bar gene at levels similar to the primary transformants. These results demonstrate that biolistic transfer of MCs support stable and high level co-expression of transgenes in bahiagrass.  相似文献   

14.
Withania somnifera is an important medicinal plant and used to cure many diseases. Direct regeneration method was standardized for the nodal explants of W. somnifera. In this method, the maximum of 42.4 ± 2.68 shoots produced per explant was achieved at 1.5 mg l?1 BAP with 0.3 mg l?1 IAA in the second subculture. Transformation was performed in the nodal explants of W. somnifera via direct regeneration using Agrobacterium tumefaciens strain EHA105 that harbored a binary vector pGA492, which carrying kanamycin resistant (nptII), phosphinothricin resistant (bar) and an intron containing β-glucuronidase (gus-intron) genes. The sensitivity of nodal explants to kanamycin (300 mg l?1) was determined for the selection of transformed plants. Transformation was confirmed by histochemical β-glucuronidase (GUS) assay and amplification of the nptII gene by polymerase chain reaction (PCR). PCR and southern blot analyses confirmed the integration of nptII gene in the genome of W. somnifera and the transformation frequency of 3.16 % has been achieved. This is the first report on the genetic transformation of W. somnifera using nodal explants, which may aid in the transformation of any other character gene for improving therapeutic value.  相似文献   

15.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

16.
Transgenic haploid maize (Zea mays L.) plants were obtained from protoplasts isolated from microspore-derived cell suspension cultures. Protoplasts were electroporated in the presence of plasmid DNA containing the gus A and npt II genes encoding ß-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II), respectively. Transformed calli were selected and continuously maintained on kanamycin containing medium. Stable transformation was confirmed by enzyme assays and DNA. analysis. Stably transformed tissue was transferred to regeneration medium and several plants were obtained. Most plants showed NPT II activity, and some also showed GUS activity. Chromosome examinations performed on representative plants showed that they were haploid. As expected, these plants were infertile.  相似文献   

17.
Thirty eight green and 2 albino plants were regenerated from400 kanamycin-resistant colonies derived from protoplasts isolatedfrom cell suspensions of Oryza sativa variety Taipei 309 andelectroporated with pCaMVNEO carrying the neomycin phosphotransferaseII (nptII) gene. Twenty of the green transgenic Ro plants weretransferred to the glasshouse, where 3 flowered after 7 months.Of 15 plants analysed by DNA hybridization, all carried thenptll gene, but only 2 of 11 plants assayed for NPTII activityexpressed the nptll gene. One transgenic Ro plant produced 59seeds following self-pollination. The seeds, when germinatedon medium containing kanamycin sulphate, gave 16 green transgenicR, plants. Five transgenic R1 plants flowered and set seed,7 flowered but failed to produce seeds, while 4 did not producepanicles. Transgenic Ro and R1 plants were shorter, requiredlonger to flower, and had reduced pollen viability comparedto non-transformed R1 protoplast-derived plants. The nptII genewas present in all 16 transgenic R1 plants, but NPTII activitywas detected in only 8 of these plants. Key words: Oryza sativa variety Taipei 309, rice, protoplasts, direct DNA uptake, kanamycin-resistant tissues, transgenic plants, DNA hybridization, neomycin phosphotransferase II (NPTII), gene expression and inheritance  相似文献   

18.
Agrobacterium tumefaciens strain LBA4404 containing the plasmid pBI121, carrying the reporter gene uidA and the kanamycin resistance gene nptII, was used for gene transfer experiments in selenium (Se)-hyperaccumulator Astragalus racemosus. The effects of kanamycin on cell growth and division and acetosyringone on transformation efficiency were evaluated. The optimal concentration of kanamycin that could effectively inhibit cell growth and division in non-transgenic tissues was 50 mg l−1 and thus all putative transgenic plants were obtained on induction medium containing 50 mg l−1 kanamycin. The verification of transformants was achieved by both histochemical GUS assay and PCR amplification of nptII gene. Southern blot analysis was performed to further confirm that transgene nptII was stably integrated into the A. racemosus genome. A transformation frequency of approximately 10% was achieved using this protocol, but no beneficial effect from the addition of acetosyringone (50 μM) was observed. This transformation system will be a useful tool for future studies of genes responsible for Se-accumulation in A. racemosus.  相似文献   

19.
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of nonreplicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of -glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, -galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.  相似文献   

20.

Key message

The development of transgenic citrus plants by the biolistic method.

Abstract

A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号