首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Urban  J R Lee  M Freeman 《Cell》2001,107(2):173-182
The polytopic membrane protein Rhomboid-1 promotes the cleavage of the membrane-anchored TGFalpha-like growth factor Spitz, allowing it to activate the Drosophila EGF receptor. Until now, the mechanism of this key signaling regulator has been obscure, but our analysis suggests that Rhomboid-1 is a novel intramembrane serine protease that directly cleaves Spitz. In accordance with the putative Rhomboid active site being in the membrane bilayer, Spitz is cleaved within its transmembrane domain, and thus is, to our knowledge, the first example of a growth factor activated by regulated intramembrane proteolysis. Rhomboid-1 is conserved throughout evolution from archaea to humans, and our results show that a human Rhomboid promotes Spitz cleavage by a similar mechanism. This growth factor activation mechanism may therefore be widespread.  相似文献   

2.
The Drosophila embryonic epidermis has been a key model for understanding the establishment of cell type diversity across a cellular field. During segmental patterning, distinct signaling territories are established that employ either the Hedgehog, Spitz, Serrate or Wingless ligands. How these pathways control segmental pattern is not completely clear. One major decision occurs as cells are allocated to differentiate either smooth cuticle or denticle type cuticle. This allocation is based on competition between Wingless signaling and Spitz, which activates the Epidermal Growth Factor Receptor (EGFR). Here we show that a main role for Serrate-Notch signaling is to adjust the Spitz signaling domain. Serrate accomplishes this task by activating Notch in a discrete domain, the main purpose of which is to broaden the spatially regulated expression of Rhomboid. This adjusts the breadth of the source for Spitz, since Rhomboid is necessary for the production of active Spitz. We also show that the Serrate antagonist, fringe, must temper Notch activity to insure that the activation of the EGFR is not too robust. Together, Serrate and Fringe modulate Notch activation to generate the proper level of EGFR activation. If Serrate-Notch signaling is absent, the denticle field narrows while the smooth cell field expands, as judged by the expression of the denticle field determinant Ovo/Shaven baby. This establishes one important role for the Serrate signaling territory, which is to define the extent of denticle field specification.  相似文献   

3.
Recent studies have clarified how the active form of the Drosophila EGF receptor ligand Spitz is produced: Star chaperones Spitz in the ER and mediates its transport to the Golgi, where the intramembrane serine protease Rhomboid cleaves the Spitz proprotein to initiate secretion.  相似文献   

4.
Klämbt C 《Current biology : CB》2000,10(10):R388-R391
Activation of the Drosophila EGF receptor requires the transmembrane TGF-alpha-like ligand Spitz. Recent studies have shed new light on the role of two transmembrane proteins, Star and Rhomboid, in the presentation and subsequent proteolytic processing of Spitz.  相似文献   

5.
Intracellular trafficking of the precursor of Spitz (Spi), the major Drosophila EGF receptor (EGFR) ligand, is facilitated by the chaperone Star, a type II transmembrane protein. This study identifies a novel mechanism for modulating the activity of Star, thereby influencing the levels of active Spi ligand produced. We demonstrate that Star can efficiently traffic Spi even when present at sub-stoichiometric levels, and that in Drosophila S(2)R(+) cells, Spi is trafficked from the endoplasmic reticulum to the late endosome compartment, also enriched for Rhomboid, an intramembrane protease. Rhomboid, which cleaves the Spi precursor, is now shown to also cleave Star within its transmembrane domain both in cell culture and in flies, expanding the repertoire of known Rhomboid substrates to include both type I and type II transmembrane proteins. Cleavage of Star restricts the amount of Spi that is trafficked, and may explain the exceptional dosage sensitivity of the Star locus in flies.  相似文献   

6.
Urban S  Freeman M 《Molecular cell》2003,11(6):1425-1434
Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information.  相似文献   

7.
Lei X  Ahn K  Zhu L  Ubarretxena-Belandia I  Li YM 《Biochemistry》2008,47(46):11920-11929
Rhomboid, a polytopic membrane serine protease, represents a unique class of proteases that cleave substrates within the transmembrane domain. Elucidating the mechanism of this extraordinary catalysis comes with inherent challenges related to membrane-associated peptide hydrolysis. Here we established a system that allows expression and isolation of YqgP, a rhomboid homologue from Bacillus subtilis, as a soluble protein. Intriguingly, soluble YqgP is able to specifically cleave a peptide substrate that contains the transmembrane domain of Spitz. Mutation of the catalytic dyad abolished protease activity, and substitution of another highly conserved residue, Asn241, with Ala or Asp significantly reduced the catalytic efficiency of YqgP. We have identified the cleavage site that resides in the middle of the transmembrane domain of Spitz. Replacement of two residues that contribute to the scissile bond by Ala did not eliminate cleavage, but rather led to additional or alternative cleavages. Moreover, we have demonstrated that soluble YqgP exists as oligomers that are required for catalytic activity. These results suggest that soluble oligomers of maltose binding protein-YqgP complexes form micellelike structures that are able to retain the active conformation of the protease for catalysis. Therefore, this work not only provides a unique system for elucidating the reaction mechanism of rhomboid but also will facilitate the characterization of other intramembrane proteases as well as non-protease membrane proteins.  相似文献   

8.
Kanaoka MM  Urban S  Freeman M  Okada K 《FEBS letters》2005,579(25):5723-5728
Regulated intramembrane proteolysis (RIP) is a fundamental mechanism for controlling a wide range of cellular functions. The Drosophila protein Rhomboid-1 (Rho-1) is an intramembrane serine protease that cleaves epidermal growth factor receptor (EGFR) ligands to release active growth factors. Despite differences in the primary structure of Rhomboid proteins, the proteolytic activity and substrate specificity of these enzymes has been conserved in diverse organisms. Here, we show that an Arabidopsis Rhomboid protein AtRBL2 has proteolytic activity and substrate specificity. AtRBL2 cleaved the Drosophila ligands Spitz and Keren, but not similar proteins like TGFalpha, when expressed in mammalian cells, leading to the release of soluble ligands into the medium. These studies provide the first evidence that the determinants of RIP are present in plants.  相似文献   

9.
The release of signaling molecules from neurons must be regulated, to accommodate their highly polarized structure. In the developing Drosophila visual system, photoreceptor neurons secrete the epidermal growth factor receptor ligand Spitz (Spi) from their cell bodies, as well as from their axonal termini. Here we show that subcellular localization of Rhomboid proteases, which process Spi, determines the site of Spi release from neurons. Endoplasmic reticulum (ER) localization of Rhomboid 3 is essential for its ability to promote Spi secretion from axons, but not from cell bodies. We demonstrate that the ER extends throughout photoreceptor axons, and show that this feature facilitates the trafficking of the Spi precursor, the ligand chaperone Star, and Rhomboid 3 to axonal termini. Following this trafficking step, secretion from the axons is regulated in a manner similar to secretion from cell bodies. These findings uncover a role for the ER in trafficking proteins from the neuronal cell body to axon terminus.  相似文献   

10.
The Drosophila EGF receptor ligand Spitz is cleaved by Rhomboid to generate an active secreted molecule. Surprisingly, when a cleaved variant of Spitz (cSpi) was expressed, it accumulated in the ER, both in embryos and in cell culture. A cell-based RNAi screen for loss-of-function phenotypes that alleviate ER accumulation of cSpi identified several genes, including the small wing (sl) gene encoding a PLCgamma. sl mutants compromised ER accumulation of cSpi in embryos, yet they exhibit EGFR hyperactivation phenotypes predominantly in the eye. Spi processing in the eye is carried out primarily by Rhomboid-3/Roughoid, which cleaves Spi in the ER, en route to the Golgi. The sl mutant phenotype is consistent with decreased cSpi retention in the R8 cells. Retention of cSpi in the ER provides a novel mechanism for restricting active ligand levels and hence the range of EGFR activation in the developing eye.  相似文献   

11.
12.
Reich A  Shilo BZ 《The EMBO journal》2002,21(16):4287-4296
Spitz (Spi) is the most prominent ligand of the Drosophila EGF receptor (DER). It is produced as an inactive membrane precursor which is retained in the endoplasmic reticulum (ER). To allow cleavage, Star transports Spi to the Golgi, where it undergoes cleavage by Rhomboid (Rho). Since some DER phenotypes are not mimicked by any of its known activating ligands, we identified an additional ligand by database searches, and termed it Keren (Krn). Krn is a functional homolog of Spi since it can rescue the spi mutant phenotype in a Rho- and Star-dependent manner. In contrast to Spi, however, Krn also possesses a Rho/Star-independent ability to undergo low-level cleavage and activate DER, as evident both in cell culture and in flies. The difference in basal activity correlates with the cellular localization of the two ligands. While Spi is retained in the ER, the retention of Krn is only partial. Examining Spi/Krn chimeric and deletion constructs implicates the Spi cytoplasmic domain in inhibiting its basal activity. Low-level activity of Krn calls for tightly regulated expression of the Krn precursor.  相似文献   

13.
Pattern formation in epithelial layers heavily relies on cell communication by secreted ligands. Whereas the experimentally observed signaling patterns can be visualized at single-cell resolution, a biophysical framework for their interpretation is currently lacking. To this end, we develop a family of discrete models of cell communication in epithelial layers. The models are based on the introduction of cell-to-cell coupling coefficients that characterize the spatial range of intercellular signaling by diffusing ligands. We derive the coupling coefficients as functions of geometric, cellular, and molecular parameters of the ligand transport problem. Using these coupling coefficients, we analyze a nonlinear model of positive feedback between ligand release and binding. In particular, we study criteria of existence of the patterns consisting of clusters of a few signaling cells, as well as the onset of signal propagation. We use our model to interpret recent experimental studies of the EGFR/Rhomboid/Spitz module in Drosophila development.  相似文献   

14.
Xu  Zheyuan  Wang  Ran  Li  Xu  Yang  Limin  Peng  Hao  Wang  Yang  Wang  Ping 《Journal of molecular histology》2021,52(3):503-510
Journal of Molecular Histology - Rhomboid domain containing 1 (RHBDD1) gene, which was reported to be upregulated in human several cancer, was associated with carcinogenesis. However, the potential...  相似文献   

15.
We explore the role of differential compartmentalization of Rhomboid (Rho) proteases that process the Drosophila EGF receptor ligands, in modulating the amount of secreted ligand and consequently the level of EGF receptor (EGFR) activation. The mSpitz ligand precursor is retained in the ER, and is trafficked by the chaperone Star to a late compartment of the secretory pathway, where Rho-1 resides. This work demonstrates that two other Rho proteins, Rho-2 and Rho-3, which are expressed in the germ line and in the developing eye, respectively, cleave the Spitz precursor and Star already in the ER, in addition to their activity in the late compartment. This property attenuates EGFR activation, primarily by compromising the amount of chaperone that can productively traffic the ligand precursor to the late compartment, where cleavage and subsequent secretion take place. These observations identify changes in intracellular compartment localization of Rho proteins as a basis for signal attenuation, in tissues where EGFR activation must be highly restricted in space and time.  相似文献   

16.
17.
Rhomboids are ubiquitous integral membrane proteases that release cellular signals from membrane-bound substrates through a general signal transduction mechanism known as regulated intramembrane proteolysis (RIP). We present the NMR structure of the cytosolic N-terminal domain (NRho) of P. aeruginosa Rhomboid. NRho consists of a novel alpha/beta fold and represents the first detailed structural insight into this class of intramembrane proteases. We find evidence that NRho is capable of strong and specific association with detergent micelles that mimic the membrane/water interface. Relaxation measurements on NRho reveal structural fluctuations on the microseconds-milliseconds timescale in regions including and contiguous to those implicated in membrane interaction. This structural plasticity may facilitate the ability of NRho to recognize and associate with membranes. We suggest that NRho plays a role in scissile peptide bond selectivity by optimally positioning the Rhomboid active site relative to the membrane plane.  相似文献   

18.
19.
20.
Rhomboid-1 is a serine protease that cleaves the membrane domain of the Drosophila EGF-family protein, Spitz, to release a soluble growth factor. Several vertebrate rhomboid-like proteins have been identified, although their substrates and functions remain unknown. The human rhomboid, RHBDL2, cleaves the membrane domain of Drosophila Spitz when the proteins are co-expressed in mammalian cells. However, the membrane domains of several mammalian EGF-family proteins were not cleaved by RHBDL2, suggesting that the endogenous targets of the human protease are not EGF-related factors. We demonstrate that the amino acid sequence at the luminal face of the membrane domain of a substrate protein determines whether it is cleaved by RHBDL2. Based on this finding, we predicted B-type ephrins as potential RHBDL2 substrates. We found that one of these, ephrinB3, was cleaved so efficiently by the protease that little ephrinB3 was detected on the surface of cells co-expressing RHBDL2. These results raise the possibility that RHBDL2-mediated proteolytic processing may regulate intercellular interactions between ephrinB3 and eph receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号