首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transfection of rat oligodendrocytes with an oligonucleotide sequence complementary to the mRNA encoding the initial ten amino acids of the rat 70-kDa heat shock cognate protein (HSC70) resulted in a rapid (within 24 h) and significant reduction in HSC70 synthesis (69% of control cells transfected with sense oligonucleotide). A further decrease to approximately 44% of controls was detected after 2 days. At that time, HSC70 protein content fell to approximately 49% of controls, and a significant reduction in the synthesis of myelin basic protein (MBP) was first detected (66% of controls). After 5 days, HSC70 synthesis returned to control levels. As HSC70 protein content recovered, so did the synthesis of MBP. Throughout the 5-day experimental period, only minor changes were detected in cell morphology, overall pattern of protein synthesis and the synthesis and content of proteolipid protein (PLP) and the pi isoenzyme of glutathione-S-transferase (pi). These data show that when HSC70 protein content is sufficiently reduced by antisense oligonucleotide, synthesis of MBP (but not PLP or pi) is correspondingly down-regulated, and provide evidence consistent with the role of HSC70 as a chaperone for MBP. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

2.
A subset of heat shock proteins, HSP90 alpha, HSP90 beta, and a member of the HSP70 family, HSC70, shows enhanced synthesis following mitogenic activation as well as heat shock in human peripheral blood mononuclear cells. In this study, we have examined expression of mRNA for these proteins, including the major 70-kDa heat shock protein, HSP70, in mononuclear cells following either heat shock or mitogenic activation with phytohemagglutinin (PHA), ionomycin, and the phorbol ester, tetradecanoyl phorbol acetate. The results demonstrate that the kinetics of mRNA expression of these four genes generally parallel the kinetics of enhanced protein synthesis seen following either heat shock or mitogen activation and provide clear evidence that mitogen-induced synthesis of HSC70 and HSP90 is due to increased mRNA levels and not simply to enhanced translation of preexisting mRNA. Although most previous studies have focused on cell cycle regulation of HSP70 mRNA, we found that HSP70 mRNA was only slightly and transiently induced by PHA activation, while HSC70 is the predominant 70-kDa heat shock protein homologue induced by mitogens. Similarly, HSP90 alpha appears more inducible by heat shock than mitogens while the opposite is true for HSP90 beta. These results suggest that, although HSP70 and HSC70 have been shown to contain similar promoter regions, additional regulatory mechanisms which result in differential expression to a given stimulus must exist. They clearly demonstrate that human lymphocytes are an important model system for determining mechanisms for regulation of heat shock protein synthesis in unstressed cells. Finally, based on kinetics of mRNA expression, the results are consistent with the hypothesis that HSC70 and HSP90 gene expression are driven by an IL-2/IL-2 receptor-dependent pathway in human T cells.  相似文献   

3.
Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) genes, plus GRP78 (Glucose-regulated protein 78 kDa) were surveyed for expression levels via Q-PCR after both an acute 2-h heat shock experiment and a time course assay in the Antarctic plunderfish Harpagifer antarcticus. In general, down regulation of all genes was observed during the course of the heat shock experiments. This thermally induced down regulation was particularly acute for the GRP78 gene, which at one time point was more than 100-fold down regulated. These results demonstrate the loss of the heat shock response in H. antarcticus, a basal member of the Notothenioidei. This finding is discussed with reference to the survival of Notothenioids during observed ocean warming and also the reorganisation of cellular protein mechanisms of species living in extreme environments.  相似文献   

4.
To identify proteins linked to the pathogenesis of hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV), we profiled protein expression levels in samples of HCC. To identify essential proteins, ten samples of HCV-related HCC were analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. These experiments revealed increased levels of nine proteins in cancerous tissues compared to levels in corresponding noncancerous liver tissues. We focused on four members of the heat shock protein 70 family: 78 kDa glucose-regulated protein (GRP78), heat shock cognate 71 kDa protein (HSC70), 75 kDa glucose-regulated protein (GRP75), and heat shock 70 kDa protein 1 (HSP70.1). These results were confirmed by immunoblot analysis. In an additional 11 samples, the same expression patterns of these four proteins were observed. In total, 21 samples showed statistically significant up-regulation of GRP78, GRP75 and HSP70.1 in cancerous tissues. HSC70 showed a tendency toward overexpression. There has been no report describing overexpression of these four proteins simultaneously in HBV-related HCC as well as nonviral HCC. Our results suggest that these four proteins play important roles in the pathogenesis of HCV-related HCC and could be molecular targets for diagnosis and treatment of this disease.  相似文献   

5.
Stress-induced release of HSC70 from human tumors   总被引:3,自引:0,他引:3  
In this study, we demonstrate that the pro-inflammatory cytokine interferon-gamma (IFN-gamma) induces the active release of the constitutive form of the 70-kDa heat shock protein (HSC70) from K562 erythroleukemic cells. Treatment of K562 cells with IFN-gamma induced the upregulation of the inducible form of the 70-kDa heat shock protein (HSP70), but not the constitutive form of HSC70 within the cytosol, in a proteasome-dependent manner. In addition, IFN-gamma induced the downregulation of surface-bound HSC70, but did not significantly alter surface-bound HSP70 expression. These findings indicate that HSC70 can be actively released from tumor cells and is indicative of a previously unknown mechanism by which immune modulators stimulate the release of intracellular HSC70. This mechanism may account for the potent chaperokine activity of heat shock proteins recently observed during heat shock protein-based immunotherapy against a variety of cancers.  相似文献   

6.
7.
Two-dimensional gel electrophoresis of cytosolic proteins from mature human erythrocytes combined with immunoblotting revealed the presence of a group of heat shock proteins (HSPs) that included two molecular chaperons of the HSP70 family (HSX70, inducible; HSC70, constitutively expressed) and HSP90. As expected for cells devoid of organelles, erythrocytes do not contain stress proteins that are localized either in the mitochondria (HSP60, glucose-regulated protein (GRP 75) or in the endoplasmic reticulum (GRP78 or Ig heavy chain-binding protein, endoplasmin). Since red cells are unable to replace proteins whose structure has been damaged by environmental changes the results are taken to imply a role for chaperons in monitoring, protecting, and maintaining the structure and stability of erythrocyte proteins.  相似文献   

8.
We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Co-chaperone HOP (also called stress-inducible protein 1) is a co-chaperone that interacts with the cytosolic 70-kDa heat shock protein (HSP70) and 90-kDa heat shock protein (HSP90) families using different tetratricopeptide repeat domains. HOP plays crucial roles in the productive folding of substrate proteins by controlling the chaperone activities of HSP70 and HSP90. Here, we examined the levels of HOP, HSC70 (cognate of HSP70, also called HSP73), and HSP90 in the tumor tissues from colon cancer patients, in comparison with the non-tumor tissues from the same patients. Expression level of HOP was significantly increased in the tumor tissues (68% of patients, n = 19). Levels of HSC70 and HSP90 were also increased in the tumor tissues (95% and 74% of patients, respectively), and the HOP level was highly correlated with those of HSP90 (r = 0.77, p < 0.001) and HSC70 (r = 0.68, p < 0.01). Immunoprecipitation experiments indicated that HOP complexes with HSC70 or HSP90 in the tumor tissues. These data are consistent with increased formation of co-chaperone complexes in colon tumor specimens compared to adjacent normal tissue and could reflect a role for HOP in this process.  相似文献   

10.
Heat shock proteins (HSPs) are molecular chaperones which may act protective in cerebrovascular insults and peripheral diabetic neuropathy. We hypothesized that alpha-lipoic acid (LA), a natural thiol antioxidant, may enhance brain HSP response in diabetes. Rats with or without streptozotocin-induced diabetes were treated with LA or saline for 8 weeks. Half of the rats were subjected to exhaustive exercise to investigate HSP induction, and the brain tissue was analyzed. Diabetes increased constitutive HSC70 mRNA, and decreased HSP90 and glucose-regulated protein 75 (GRP75) mRNA without affecting protein levels. Exercise increased HSP90 protein and mRNA, and also GRP75 and heme oxygenase-1 (HO-1) mRNA only in non-diabetic animals. LA had no significant effect on brain HSPs, although LA increased HSC70 and HO-1 mRNA in diabetic animals and decreased HSC70 mRNA in non-diabetic animals. Eukaryotic translation elongation factor-2, essential for protein synthesis, was decreased by diabetes and suggesting a mechanism for the impaired HSP response related to translocation of the nascent chain during protein synthesis. LA supplementation does not offset the adverse effects of diabetes on brain HSP mRNA expression. Diabetes may impair HSP translation through elongation factors related to nascent chain translocation and subsequent responses to acute stress.  相似文献   

11.
The HSPs (heat‐shock proteins) of the 70‐kDa family, the constitutively expressed HSC70 (cognate 70‐kDa heat‐shock protein) and the stress‐inducible HSP70 (stress‐inducible 70‐kDa heat‐shock protein), have been reported to be actively secreted by various cell types. The mechanisms of the release of these HSPs are obscure, since they possess no consensus secretory signal sequence. We showed that baby hamster kidney (BHK‐21) cells released HSP70 and HSC70 in a serum‐free medium and that this process was the result of an active secretion of HSPs rather than the non‐specific release of the proteins due to cell death. It was found that the secretion of HSP70 and HSC70 is independent of de novo protein synthesis. BFA (Brefeldin A) did not inhibit the basal secretion of HSPs, indicating that the secretion of HSP70 and HSC70 from cells occurs by a non‐classical pathway. Exosomes did not contribute to the secretion of HSP70 and HSC70 by cells. MBC (methyl‐β‐cyclodextrin), a substance that disrupts the lipid raft organization, considerably reduced the secretion of both HSPs, indicating that lipid rafts are involved in the secretion of HSP70 and HSC70 by BHK‐21 cells. The results suggest that HSP70 and HSC70 are actively secreted by BHK‐21 cells in a serum‐free medium through a non‐classical pathway in which lipid rafts play an important role.  相似文献   

12.
Abstract: The expression of the 70-kDa heat shock cognate (HSC70) and stress-inducible (HSP70) proteins, and their mRNAs, was examined in experimental autoimmune encephalomyelitis, a model of inflammatory demyelination in the CNS. This study was undertaken as an extension of previous work demonstrating an abrupt decline in mRNA levels of both glial fibrillary acidic protein and the low-molecular-weight neurofilament subunit in experimental autoimmune encephalomyelitis spinal cord at 12 days after inoculation, the height of inflammation and clinical signs. Using the same total RNA preparations as our previous study, we report here that mRNA levels for HSC70 increased approximately sixfold over control values at the same time that glial fibrillary acidic protein and low-molecular-weight neurofilament subunit messages decreased and were similar to controls by 21 days after inoculation. In situ hybridization experiments showed that HSC70 mRNA was predominantly expressed in neurons and that the influx of inflammatory cells into the CNS was not responsible for the large increase in HSC70 message. Despite this elevation in mRNA, only small (if any) increases in protein levels for HSC70 were detected by both western blotting and in vitro cell-free translation systems. However, by quantitative immunoblotting, we determined that constitutive levels of HSC70 comprised a substantial portion of CNS proteins, representing 2–3% of the total protein content of spinal cord. Immunohistochemical staining illustrated that the distribution of HSC70 was consistent with that of its message. In contrast, no HSP70 mRNA or protein was detected in either control or experimental animals.  相似文献   

13.
14.
The present study examined the expression of 73-kDa of heat shock cognate protein (HSC70), 72-kDa of heat shock protein (HSP70) and 47-kDa of HSP (HSP47) observed in the ulcer healing process in rats. Gastric ulcers were induced by a luminal application of acetic acid in male Donryu rats. During the ulcer healing process, the expression of HSPs in the ulcerated tissue was determined. A high level of HSC70 expression was observed both in the normal mucosa and ulcerated tissue, but the level did not change upon ulceration and ulcer healing. While HSP70 and HSP47 were markedly expressed in the ulcer base during ulceration, and decreased with ulcer healing. HSP70 expression in the ulcer margin was gradually increased with ulcer healing. Omeprazole accelerated the healing of gastric ulcers with strong inhibition of gastric acid secretion, while indomethactin delayed in ulcer healing despite slight inhibition of gastric acid secretion. Omperazole enhanced the expression of HSP70 both in the ulcer margin and base, but it reduced HSP47 expression in the ulcer base Indomethacin markedly enhanced HSP47 expression only in the ulcer base. In conclusion, the expression of HSP70 and HSP47 is changed during ulcer healing. Furthermore, it was suggested that the enhanced expression of HSP70 is involved in acceleration of ulcer healing, but overexpression of HSP47 is involved in delayed ulcer healing.  相似文献   

15.
Liver, a central organ responsible for the metabolism of carbohydrates, proteins, and lipoproteins, is exposed to various kinds of physiological, pathological, and environmental stresses. We hypothesized that blockage of proteasome degradation pathway induces heat shock protein (HSP) response and unfolded protein response in the liver cells. In this study, we have characterized cellular responses to proteasome inhibition in HepG2 cells, a well-differentiated human hepatoma cells. We found that proteasome inhibition induced differential response among cytosolic HSPs, that is, increased expression of HSP70, but no change in HSP40, HSC70, and HSP90. However, proteasome inhibition did not induce typical unfolded protein response as indicated by absence of stimulation of GRP78 and GRP94 proteins. Upon proteasome inhibition, inclusion bodies were accumulated, and ubiquitin-conjugated proteins appeared in insoluble fraction, together with HSP40, HSP70, HSC70, and HSP90. After proteasome inhibition, misfolded proteins were increased in the cytosol and in the ER compartment as evaluated by examining ubiquitin-conjugated proteins. However, essentially all ER-associated ubiquitin-conjugated proteins were located on the surface of the ER, which explains why proteasome inhibition does not induce unfolded protein response. In conclusion, proteasome inhibition induces differential HSP response, but not unfolded protein response in HepG2 cells. Our study also suggests that HSPs play important roles in directing proteasomal degradation and protein aggregate formation.  相似文献   

16.
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.  相似文献   

17.
Heat shock protein (HSP) synthesis was studied in the Xenopus epithelial cell line A6 in response to heat and sodium arsenite, either singly or together. Temperatures of 33-35 degrees C consistently brought about the synthesis of HSPs at 87, 73, 70, 54, 31, and 30 kilodaltons (kDa), whereas sodium arsenite at 25-100 microM induced the synthesis of HSPs at 73 and 70 kDa. In cultures exposed to 10 microM sodium arsenite at 30 degrees C, HSP synthesis in the 68- to 73-kDa and 29- to 31-kDa regions was much greater than the HSP synthesis in response to each treatment individually. RNA dot blot analysis using homologous genomic subclones revealed that heat shock induced the accumulation of HSP 70 and 30 mRNAs. The sizes of the HSP 70 and 30 mRNAs determined by Northern hybridization were 2.7 and 1.5 kilobases, respectively. Sodium arsenite (10-100 microM) also induced the accumulation of both HSP 70 and 30 mRNAs. Finally, a mild heat shock (30 degrees C) plus a low concentration of sodium arsenite (10 microM) acted synergistically on HSP 70 and 30 mRNA accumulation in A6 cells. Thus sodium arsenite and heat act synergistically at the level of both HSP synthesis and HSP mRNA accumulation.  相似文献   

18.
19.
The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.  相似文献   

20.
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60 min., five times/wk for 2 months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross‐sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin‐like proteasome activity (UPS activity), redox balance and heat‐shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down‐regulation of protein synthesis and up‐regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6α protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号