共查询到20条相似文献,搜索用时 0 毫秒
1.
Giorgia Lamberti Claire Drurey Jürgen Soll Serena Schwenkert 《Plant signaling & behavior》2011,6(12):1918-1920
Import of nuclear encoded proteins into chloroplast is an essential and well-regulated mechanism. The cytosolic kinases STY8, STY17 and STY46 have been shown to phosphorylate chloroplast preprotein transit peptides advantaging the binding of a 14-3-3 dimer. Analyses of sty8 sty17 sty46 mutant plants revealed a role for the kinases in chloroplast differentiation, possibly due to lack of transit peptide phosphorylation. Moreover we could show that not only phosphorylation but also transit peptide dephosphorylation appears to be required for the fine regulation of the back-transport of nuclear encoded proteins to the chloroplast. 相似文献
2.
3.
The stromal processing peptidase (SPP) cleaves a large diversity of chloroplast precursor proteins, removing an N-terminal transit peptide. We predicted previously that this key step of the import pathway is mediated by features of the transit peptide that determine precursor binding and cleavage followed by transit peptide conversion to a degradable substrate. Here we performed competition experiments using synthesized oligopeptides of the transit peptide of ferredoxin precursor to investigate the mechanism of these processes. We found that binding and processing of ferredoxin precursor depend on specific interactions of SPP with the region consisting of the C-terminal 12 residues of the transit peptide. Analysis of four other precursors suggests that processing depends on the same region, although their transit peptides are highly divergent in primary sequence and length. Upon processing, SPP terminates its interaction with the transit peptide by a second cleavage, converting it to a subfragment form. From the competition experiments we deduce that SPP releases a subfragment consisting of the transit peptide without its original C terminus. Interestingly, examination of the ATP-dependent metallopeptidase activity responsible for degradation of transit peptide subfragments suggests that it may recognize other unrelated peptides and, hence, act separately from SPP as a novel stromal oligopeptidase. 相似文献
4.
The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides
下载免费PDF全文

The channel properties of Toc75 (the protein import pore of the outer chloroplastic membrane) were further characterized by electrophysiological measurements in planar lipid bilayers. After improvement of the Toc75 reconstitution procedure the voltage dependence of the channel open probability resembled those observed for other beta-barrel pores. Studies concerning the pore size of the reconstituted Toc75 indicate the presence of a narrow restriction zone corresponding to the selectivity filter and a wider pore vestibule with diameters of approximately 14 A and 26 A, respectively. Interactions between Toc75 and different peptides (a genuine chloroplastic transit peptide, a synthetic peptide resembling a transit peptide, and a mitochondrial presequence) show that Toc75 itself is able to differentiate between these peptides and the recognition is based on both conformational and electrostatic interactions. 相似文献
5.
6.
Human Muscleblind-like proteins are alternative splicing regulators that are functionally altered in the RNA-mediated disease myotonic dystrophy. There are different Muscleblind protein isoforms in Drosophila and we previously determined that these have different subcellular localizations in the COS-M6 cell line. Here, we describe the conservation of the sequence motif KRAEK in isoforms C and E and propose a specific function for this motif. Different Muscleblind isoforms localize to the peri-plasma membrane (MblA), cytoplasm (MblB), or show no preference for the nuclear or cytoplasmic compartment (MblC and MblD) in Drosophila S2 cells transiently transfected with Musclebind expression plasmids. Mutation of the KRAEK motif reduces MblC nuclear localization, whereas fusion of a single KRAEK motif to the heterologous protein β-galactosidase is sufficient to target the reporter protein to the nucleus of S2 cells. This motif is not exclusive to Muscleblind proteins and is detected in several other protein types. Taken together, these results suggest that the KRAEK motif regulates nuclear translocation of Muscleblind and may constitute a new class of nuclear localization signal. 相似文献
7.
Ceramide kinase (CerK) is a sphingolipid metabolizing enzyme very sensitive to oxidation; however, the determinants are unknown. We show here that the thiol-modifying agent N-ethyl-maleimide abrogates CerK activity in vitro and in a cell based assay, implying that important cysteine residues are accessible in purified as well as endogenous CerK. We replaced every 22 residues in human CerK, by an alanine, and measured activity in the resulting mutant proteins. This led to identification of a cluster of cysteines, C(347)XXXC(351)XXC(354), essential for CerK function. These findings are discussed based on homology modeling of the catalytic domain of CerK. 相似文献
8.
9.
The DHHC domain: A new highly conserved cysteine-rich motif 总被引:5,自引:0,他引:5
A unique clone from a human pancreatic cDNA library was isolated and sequenced. Examination of the deduced polypeptide sequence of the clone showed a new form of cysteine-rich domain that included a region with the form of a Cys4 zinc-finger-like metal binding site followed by a complex Cys-His region. Searches of the Swiss-Protein data bank found a similar 48-residue domain in fifteen open reading frames deduced from A. thaliana, C. elegans, S. cerevisiae and S. pombe genomic sequences. The high degree of conservation of this domain (13 absolutely conserved and 17 highly conserved positions) suggests that it has an important function in the cell, possibly related to protein-protein or protein-DNA interactions. The gene recognized by the clone is is localized to human chromosome 16, and is conserved in vertebrates. The 2 Kb message is expressed in various human fetal and adult tissues. An antibody made to a peptide sequence of the deduced protein showed reactivity in immunoblots of monkey lung and retinal subcellular fractions and immunohistochemically in late fetal mouse tissues and a limited number of adult mouse tissues, including pancreatic islets, Leydig cells of the testis, and the plexiform layers of the retina. 相似文献
10.
11.
12.
Non-canonical transit peptide for import into the chloroplast 总被引:11,自引:0,他引:11
Miras S Salvi D Ferro M Grunwald D Garin J Joyard J Rolland N 《The Journal of biological chemistry》2002,277(49):47770-47778
The large majority of plastid proteins are nuclear-encoded and, thus, must be imported within these organelles. Unlike most of the outer envelope proteins, targeting of proteins to all other plastid compartments (inner envelope membrane, stroma, and thylakoid) is strictly dependent on the presence of a cleavable transit sequence in the precursor N-terminal region. In this paper, we describe the identification of a new envelope protein component (ceQORH) and demonstrate that its subcellular localization is limited to the inner membrane of the chloroplast envelope. Immunopurification, microsequencing of the natural envelope protein and cloning of the corresponding full-length cDNA demonstrated that this protein is not processed in the N-terminal region during its targeting to the inner envelope membrane. Transient expression experiments in plant cells were performed with truncated forms of the ceQORH protein fused to the green fluorescent protein. These experiments suggest that neither the N-terminal nor the C-terminal are essential for chloroplastic localization of the ceQORH protein. These observations are discussed in the frame of the endosymbiotic theory of chloroplast evolution and suggest that a domain of the ceQORH bacterial ancestor may have evolved so as to exclude the general requirement of an N-terminal plastid transit sequence. 相似文献
13.
Previously, the C-terminal fragment of a split intein was known to undergo controllable C-cleavage at its C-terminus only when the N-terminal fragment of the intein was added. Here we constructed a similar split intein from the Ssp DnaX intein, but we unexpectedly observed that its C-terminal 136-aa fragment could undergo spontaneous C-cleavage without the N-terminal fragment that was up to 15 aa long and contained the conserved intein motif A. This C-cleavage activity was significantly decreased by a mutation of the conserved Thr residue in the conserved intein motif B. These findings suggest a robust intein structure in the absence of motif A and a larger role of motif B in the third step of the protein splicing mechanism. 相似文献
14.
Malaria parasites (species of the genus Plasmodium) harbor a relict chloroplast (the apicoplast) that is the target of novel antimalarials. Numerous nuclear-encoded proteins are translocated into the apicoplast courtesy of a bipartite N-terminal extension. The first component of the bipartite leader resembles a standard signal peptide present at the N-terminus of secreted proteins that enter the endomembrane system. Analysis of the second portion of the bipartite leaders of P. falciparum, the so-called transit peptide, indicates similarities to plant transit peptides, although the amino acid composition of P. falciparum transit peptides shows a strong bias, which we rationalize by the extraordinarily high AT content of P. falciparum DNA. 786 plastid transit peptides were also examined from several other apicomplexan parasites, as well as from angiosperm plants. In each case, amino acid biases were correlated with nucleotide AT content. A comparison of a spectrum of organisms containing primary and secondary plastids also revealed features unique to secondary plastid transit peptides. These unusual features are explained in the context of secondary plastid trafficking via the endomembrane system. 相似文献
15.
Sara Pellegrino Nicola Ferri Noemi Colombo Edoardo Cremona Alberto Corsini Roberto Fanelli Maria Luisa Gelmi Chiara Cabrele 《Bioorganic & medicinal chemistry letters》2009,19(22):6298-6302
Modulation of smooth muscle cells to a proliferating and migrating phenotype with downregulated α-actin expression is observed upon vascular lesion formation. The Id proteins (inhibitors of cell differentiation) play a role in the development of this phenotype. In contrast, synthetic peptides based on a conserved 11-residue Id sequence trigger the switch to a contractile phenotype that shows reduced cell growth and migration, increased expression of α-actin and decreased Id protein levels. 相似文献
16.
A computational method to identify residues important in creating a protein promoting vibration (PPV) in enzymes was previously developed and applied to horse liver alcohol dehydrogenase (HLADH), resulting in the identification of eight important residues. From these residues, we define a sequence motif, the PPV generating sequence, and find it to be unique and general to a larger group of alcohol dehydrogenases from diverse sources, demonstrating that nature has selected for the PPV generating sequence. 相似文献
17.
A synthesis approach to understanding repeated peptides conserved in mineralization proteins 总被引:1,自引:0,他引:1
We created artificial proteins that contained repeats of a short peptide motif, Asn-Gly-Asx. In nature this motif is repeated within shell proteins as an idiosyncratic domain, while in vitro it has been shown to suppress calcification. The motif was embedded within peptide sequences that did or did not have the ability to form secondary structures, which provided the motif with a variety of physicochemical properties. Although a short synthetic peptide containing the motif did not inhibit calcification in vitro, some of the artificial proteins carrying repeats of the motif did show robust suppression of calcification. Artificial proteins lacking the motif did not exhibit suppressive activity. Likewise, one construct containing multiple repeats of the motifs also did not exert an inhibitory effect on calcification. Apparently, carrying the Asn-Gly-Asx motif is not, by itself, sufficient for expression of its cryptic activity; instead, certain physicochemical properties of the polypeptides mediate its manifestation. We anticipate that syntheses using "motif programming", such as the one described here, will shed light on the origin of repetitive sequences as well as on the evolution of biomineralization proteins. 相似文献
18.
Ferguson AD Welte W Hofmann E Lindner B Holst O Coulton JW Diederichs K 《Structure (London, England : 1993)》2000,8(6):585-592
BACKGROUND: Lipopolysaccharide (LPS), a lipoglycan from the outer membrane of Gram-negative bacteria, is an immunomodulatory molecule that stimulates the innate immune response. High levels of LPS cause excessive release of inflammatory mediators and are responsible for the septic shock syndrome. The interaction of LPS with its cognate binding proteins has not, as yet, been structurally elucidated. RESULTS: The X-ray crystallographic structure of LPS in complex with the integral outer membrane protein FhuA from Escherichia coli K-12 is reported. It is in accord with data obtained using mass spectroscopy and nuclear magnetic resonance. Most of the important hydrogen-bonding or electrostatic interactions with LPS are provided by eight positively charged residues of FhuA. Residues in a similar three-dimensional arrangement were searched for in all structurally known proteins using a fast template-matching algorithm, and a subset of four residues was identified that is common to known LPS-binding proteins. CONCLUSIONS: These four residues, three of which form specific interactions with lipid A, appear to provide the structural basis of pattern recognition in the innate immune response. Their arrangement can serve to identify LPS-binding sites on proteins known to interact with LPS, and could serve as a template for molecular modeling of a LPS scavenger designed to reduce the septic shock syndrome. 相似文献
19.
20.
Lommel M Schott A Jank T Hofmann V Strahl S 《The Journal of biological chemistry》2011,286(46):39768-39775
Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site. 相似文献