首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar secretion of endothelin-1 by cultured endothelial cells.   总被引:17,自引:0,他引:17  
The aim of this study was to determine the permeability of endothelial monolayers for endothelin-1 and a possible directionality of the endothelin-1 secretion process. Human umbilical vein endothelial cells were cultured on acellular amniotic membranes, dividing the tissue culture wells into an apical (luminal) and a basolateral (abluminal) compartment. Whereas in the absence of endothelial monolayers 44.9 +/- 2.3 and 43.5 +/- 2.0% of the unilaterally added endothelin-1 permeated from the apical to the basolateral side and from the basolateral to the apical side, respectively, only 6.5 +/- 0.6 and 6.6 +/- 0.4% diffused in the presence of endothelial cells. Analyzing endothelin-1 secretion, approximately 80% of the total amount of synthesized endothelin-1 was found in the basolateral compartment; thrombin (10 units/ml) stimulated the production of endothelin-1 approximately 2-fold, but did not change the relative distribution of endothelin-1 between the apical and basolateral compartments. In the presence of dexamethasone (10(-7) M), a decrease in the level of endothelin-1 was found in the apical compartment, whereas the total amount of endothelin-1 produced was not affected. Dexamethasone did not influence the permeability of human umbilical vein endothelial cell monolayers for endothelin-1. These results strongly support the hypothesis that endothelin-1 is a local paracrine regulator of vasotone.  相似文献   

2.
Luteolin inhibits endothelin-1 secretion in cultured endothelial cells   总被引:1,自引:0,他引:1  
We discovered that luteolin, a typical flavonoid contained in various kinds of plants, inhibits the secretion and gene expression of endothelin-1 (ET-1), a potent vasoconstrictor regulating blood pressure, in porcine aortic endothelial cells. Its ED50 was about 10 microM. In addition, the inhibition of ET-1 by a glycoside compound of luteolin (luteolin-6-C-glucoside) was weak.  相似文献   

3.
We propose a candidate for the "putative" endothelin (ET) converting enzyme in the cultured endothelial cells (ECs) of bovine carotid artery. The enzyme is membrane-bound, soluble in 0.5% Triton X-100, and capable of converting human big ET-1 to ET-1 by a specific cleavage between Trp21 and Val22. The conversion reached 90% after a 5-hr incubation in the presence of DFP, PCMS and pepstatin A, but it was inhibited by EDTA, omicron-phenanthroline or phosphoramidon. The enzyme is very sensitive to pH, and active only between pH 6.6 and pH 7.6. Conversion of big ET-3 by this enzyme was only 1/9 that of big ET-1. From these results, ET-1 converting enzyme in the bovine EC is most likely to be a membrane-bound, neutral metalloendopeptidase, which is much less susceptible to big ET-3.  相似文献   

4.
Plasminogen activator activity by cultured bovine aortic endothelial cells   总被引:1,自引:0,他引:1  
This communication reports the observations that bovine aortic endothelial cells (EC) in culture during their log phase of growth secrete plasminogen activator. Hydrocortisone, dibutyryl cAMP, theophylline, colchicine and cycloheximide, dependent upon concentration, inhibit plasminogen activator activity. Several substances associated with inflammation and thrombosis, such as thrombin, serotonin,catecholomines, histamine, vasopressin, endotoxin, and indomethacin, at the concentrations tested, did not significantly alter plasminogen activator activity when compared with controls.  相似文献   

5.
Expression of dystroglycan (DG) by cultured bovine aortic endothelial (BAE) cells was confirmed by cDNA cloning from a BAE cDNA library, Northern blotting of mRNA, Western blotting of membrane proteins, and double immunostaining with antibodies against betaDG and platelet endothelial cell adhesion molecule-1. Immunocytochemical analysis revealed localization of DG in multiple plaques on the basal side of resting cells. This patchy distribution was obscured in migrating cells, in which the most prominent staining was observed in the trailing edge anchoring the cells to the substratum. Biotin-labeled laminin-1 overlay assay of dissociated BAE membrane proteins indicated the interaction of laminin-1 with alphaDG. The laminin alpha5 globular domain fragment expressed in bacteria and labeled with biotin could also bind alphaDG on the membrane blot, and the unlabeled fragment disrupted the binding of biotin-laminin-1 to alphaDG. The interaction of biotin-laminin-1 with alphaDG was inhibited by soluble alphaDG contained in the conditioned medium from DG cDNA-transfected BAE cells and by a series of glycosaminoglycans (heparin, dextran sulfate, and fucoidan). Soluble alphaDG in the conditioned medium inhibited the adhesion of BAE cells to laminin-1-coated dishes, whereas it had no effect on their adhesion to fibronectin. All three glycosaminoglycans that disrupted the biotin-laminin-1 binding to alphaDG inhibited BAE cell adhesion to laminin-1, whereas they failed to inhibit the adhesion to fibronectin. These results indicate a role of DG as a non-integrin laminin receptor involved in vascular endothelial cell adhesion to the extracellular matrix.  相似文献   

6.
We have studied the effect of human recombinant tumour necrosis factor-alpha (TNF-alpha) on gene expression and production of endothelin-1 in cultured bovine aortic endothelial cells. TNF-alpha (10 and 100 ng ml(-1)) increased in a time dependent manner the preproendothelin-1 mRNA levels in respect to unstimulated endothelial cells. TNF-alpha induced endothelin-1 gene expression was associated with a parallel increase in the release of the corresponding peptide in the culture medium. These findings suggest that the enhanced synthesis and release of endothelin-1 occurring in conditions of increased generation of TNF, may act as a modulatory factor that counteracts the hypotensive effect and the excessive platelet aggregation and adhesion induced by TNF.  相似文献   

7.
The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells (0.62 +/- 0.07 nmol/mg of protein versus 0.27 +/- 0.05 nmol/mg of protein, respectively). Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine (25 microM) decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine. The results show that an extracellular source of ethanolamine significantly influences the phospholipid metabolism of cultured bovine aortic endothelial cells.  相似文献   

8.
Time-dependent secretion of immunoreactive-endothelin (IR-ET) from cultured porcine aortic endothelial cells was markedly suppressed by phosphoramidon is due to proteinase inhibitor. Analysis of the culture supernatant with or without phosphoramidon by reverse-phase high performance liquid chromatography confirmed that the suppression of IR-ET secretion by phosphoramidon is due to a decreae in secretion of endothelin-1-like materials. The secretion of the C-terminal fragment (CTF, 22-39)-like materials of big ET-1 was also decreased by phosphoramidon, whereas there was an increased secretion of big ET-1-like materials. These data strongly suggest that phosphoramidon suppresses the secretion of ET-1 from cultured endothelial cells by inhibiting the conversion of big ET-1 to ET-1. It is most likely that phosphoramidon-sensitive metalloproteinase is responsible for the processing of big ET-1 in vascular endothelial cells.  相似文献   

9.
We examined the effect of human recombinant interleukin 1 (IL-1) on the production of endothelin-1 by cultured porcine endothelial cells. The induction of endothelin-1 mRNA began within 1 hr of exposure to IL-1, showed twin peaks at 4 and 24 hr, and declined thereafter. Enzyme-linked immunosorbent assay revealed that the amount of endothelin-1 peptide in conditioned media was also increased by IL-1 in a dose- and time-dependent manner. Our results suggested that IL-1, a macrophage-derived cytokine, may affect the contraction and proliferation of vascular smooth muscle cells by stimulating the production of endothelin by endothelial cells.  相似文献   

10.
Bovine aortic endothelial cells were cultured in medium containing [3H]glucosamine and concentrations of [35S]sulfate ranging from 0.01 to 0.31 mM. While the amount of [3H]hexosamine incorporated into chondroitin sulfate and heparan sulfate was constant, decreasing concentrations of sulfate resulted in lower [35S]sulfate incorporation. Sulfate concentrations greater than 0.11 mM were required for maximal [35S]sulfate incorporation. Chondroitin sulfate was particularly affected so that the sulfate to hexosamine ratio in [3H]chondroitin [35S]sulfate dropped considerably more than the sulfate to hexosamine ratio in [3H] heparan [35S]sulfate. Sulfate concentration had no effect on the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. The ratios of sulfate to hexosamine in cell-associated glycosaminoglycans were essentially identical with the ratios in media glycosaminoglycans at all sulfate concentrations. DEAE-cellulose chromatography confirmed that sulfation of chondroitin sulfate was particularly sensitive to low sulfate concentrations. While cells incubated in medium containing 0.31 mM sulfate produced chondroitin sulfate which eluted later than heparan sulfate, cells incubated in medium containing less than 0.04 mM sulfate produced chondroitin sulfate which eluted before heparan sulfate and near hyaluronic acid, indicating that many chains were essentially unsulfated. At intermediate concentrations of sulfate, chondroitin sulfate was found in very broad elution patterns suggesting that most did not fit an "all or nothing" mechanism. Heparan sulfate produced at low concentrations of sulfate eluted with narrower elution patterns than chondroitin sulfate, and there was no indication of any "all or nothing" sulfation.  相似文献   

11.
This study was designed to examine how protein kinase C (PKC) regulates the release of endothelin-1 (ET-1) from cultured porcine aortic endothelial cells. We measured the release of immunoreactive (IR)-ET-1 from cells cultured for up to 72 h in the presence or absence of a phorbol ester TPA. The release of IR-ET-1 from control cells (no TPA) increased according to time for up to 72 h. In the presence of TPA, the release of IR-ET-1 from the cells was higher than the control level for up to 8 h, but was lower thereafter and reached a plateau after 48 h. TPA dose-dependently stimulated IR-ET-1 release during incubation for 4 h, but suppressed it after incubation for 72 h. Stimulation of PKC by diacylglycerol mimicked the early (4 h) action of TPA. On the other hand, pretreatment of cells with TPA to downregulate PKC significantly suppressed basal and thrombin- or FCS-stimulated IR-ET-1 release. These findings suggest that the activation of PKC is related to the stimulation of ET-1 release and that down-regulation of PKC leads to the suppression of ET-1 release from cultured endothelial cells.  相似文献   

12.
Incubation of big endothelin-1 (big ET-1(1-39] with either the cytosolic or membrane fraction obtained from cultured endothelial cells, resulted in an increase in immunoreactive-endothelin (IR-ET), which was markedly inhibited by metal chelators. Phosphoramidon, a metalloproteinase inhibitor, specifically suppressed the membrane fraction-induced increase in IR-ET, whereas the increase in IR-ET observed with the cytosolic fraction was not influenced by phosphoramidon. Reverse-phase (RP)-HPLC of the incubation mixture of big ET-1 with the cytosolic or membrane fraction revealed one major IR-ET component corresponding to the elution position of synthetic ET-1(1-21). Simultaneously, immunoreactivities like the C-terminal fragment (CTF22-39) of big ET-1 were present, as deduced from the RP-HPLC coupled with the radioimmunoassay for CTF. Our results indicate the presence of two types of metalloproteinases, which convert big ET-1 to ET-1 via a single cleavage between Trp21 and Val22, in vascular endothelial cells.  相似文献   

13.
The effect of high concentrations of glucose on Na, K-ATPase activity and the polyol pathway was studied using cultured bovine aortic endothelial cells. Na, K-ATPase activity was expressed as ouabain-sensitive K+ uptake. A significant decrease in Na, K-ATPase activity with an intracellular accumulation of sorbitol was found in confluent endothelial cells incubated with 400 mg/dl glucose for 96 h. However, there was no significant change in the Na, K-ATPase activity or sorbitol content of the cells incubated with 100 mg/dl glucose plus 300 mg/dl mannitol. The decrease in Na, K-ATPase induced by the high glucose concentration was restored by the simultaneous addition of 10(-4) M ponalrestat (ICI 128,436; Statil), an aldose reductase inhibitor. The addition of this agent also significantly reduced the increase in sorbitol induced by high glucose levels. These results suggest that the decrease in Na, K-ATPase activity induced in cultured aortic endothelial cells by high concentrations of glucose may be caused in part by the accumulation of sorbitol.  相似文献   

14.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

15.
Hyperhomocysteinemia is believed to be responsible for the development of vascular disease via several mechanisms, including the impairment of endothelial-cell functionality. In-vitro studies have demonstrated that homocysteine decreases the production or bioavailability of vasodilator autacoids, such as prostacyclin and NO. Here, we show that the treatment of human endothelial cells with noncytotoxic homocysteine concentrations leads to a dose-dependent decrease in both the secretion of the vasoconstrictor agent endothelin-1 (ET-1) and the level of its mRNA. Homocysteine had an inhibitory effect at pathophysiological (0.1 and 0.5 mmol.L(-1)) and pharmacological noncytotoxic (1.0 and 2.0 mmol.L(-1)) concentrations. Mean percentage variation from control for ET-1 production was -36. 2 +/- 18.9% for 0.5 mmol.L(-1) homocysteine and -41.5 +/- 26.8% for 1.0 mmol.L(-1) homocysteine, after incubation for 8 h. Mean percentage variation from control for steady-state mRNA was -17.3 +/- 7.1% for 0.5 mmol.L(-1) homocysteine and -46.0 +/- 10.1 for 1.0 mmol.L(-1) homocysteine, after an incubation time of 2 h. ET-1 production was also reduced by incubation with various other thiol compounds containing free thiol groups, but not by incubation with thiol compounds with no free thiol group. Co-incubation of cells with homocysteine and the sulfhydryl inhibitor N-ethylmaleimide prevented the effect of homocysteine on ET-1 production, confirming a sulfhydryl-dependent mechanism. Based on the reciprocal feedback mechanism controlling the synthesis of vasoactive mediators, these preliminary data suggest a mechanism by which homocysteine may selectively impair endothelium-dependent vasodilation by primary inhibition of ET-1 production.  相似文献   

16.
1. The addition of ATP to cultured bovine aortic endothelial cells induced the increase in intracellular free calcium concentration ([Ca2+]i) and thereby activated the sodium/proton exchanger and the prostacyclin production in a similar dose-dependent manner, as observed by the addition of ATP. 2. Other nucleoside triphosphates also activated the cells and the potency orders of the nucleotides were ATP greater than UTP greater than ITP greater than CTP greater than GTP for all the responses. 3. Pretreatment of the cells with UTP desensitized the response to ATP and the pretreatment of ATP desensitized the response to UTP. 4. The responses to ATP and UTP were inhibited by neither pertussis nor cholera toxin. 5. The receptor for UTP, however, may be a distinct pyrimidinoceptor different from the purinoceptor of the cells for ATP, because the 50% effective concentration of UDP was much larger than that of UTP, while ATP and ADP were essentially equipotent ligands to the endothelial cells.  相似文献   

17.
18.
The effects of endothelin-1 (ET-1) on the release of prostacyclin from cultured bovine aortic endothelial cells were studied. ET-1 induced a time- and dose-dependent release of 6-keto PGF1 alpha, the stable metabolite of prostacyclin, with an apparent EC50 value of 3.0 +/- 0.9 nM (n = 6). ET-1 up to a concentration of 500 nM did not affect cellular integrity. Preincubation of the cells for 30 min with 10 microM indomethacin inhibited ET-1 (100 nM) - induced prostacyclin release by 90%. These findings indicate that ET-1 can directly stimulate prostacyclin release from endothelial cells probably through a receptor mediated mechanism.  相似文献   

19.
The transport of the polar head groups, ethanolamine and choline, was examined in cultured bovine aortic endothelial cells. Both ethanolamine and choline are taken up by high- and low-affinity systems. The K'm and V'max for the Na+-dependent, high-affinity ethanolamine and choline transport system are 3.0 and 3.0 microM and 5.4 and 7.3 pmol/mg protein/min, respectively. Ethanolamine and choline competitively influence one another's transport as the presence of 50 microM ethanolamine increases the K'm but not the V'max of choline uptake. Likewise, 50 microM choline increases the K'm but not the V'max of ethanolamine transport. The concentration of ethanolamine that inhibits maximal velocity of 5 microM choline by 50% is 9.7 microM, while 12 microM choline inhibits 5 microM ethanolamine maximal velocity by 50%. Uptake of both head groups is only partially Na+-dependent and is inhibited similarly by 2-methylethanolamine and 2,2-dimethylethanolamine at all concentrations examined. Hemicholinium-3, a classic inhibitor of high-affinity, Na+-dependent choline transport, reduces both ethanolamine and choline accumulation in a concentration-dependent fashion, but has a greater effect on choline transport at higher concentrations. The major portion of these data is consistent with our hypothesis that the uptake of physiological concentrations of ethanolamine and choline may occur through the same transport system. However, the results of the effect of hemicholinium-3 and the extent of Na+-dependency of choline and ethanolamine uptake could be interpreted as meaning that separate transport systems for choline and ethanolamine exist which cross react or that a single transport system exists which has separate active sites for the two compounds.  相似文献   

20.
To explore the significance of hyperglycaemia as a causal factor for the appearance of diabetic angiopathies we investigated aspects of myo-inositol metabolism in porcine aortic endothelial cells. myo-Inositol was shown to be a long-living metabolite. Its uptake into the cells was mediated by a high-affinity, Na(+)-dependent uptake system inhibitable by ouabain with an apparent KM of 18.6 mumols/l, which was responsible for more than 80% of total uptake at physiological myo-inositol concentrations. Inhibition of inositol uptake by D-glucose was exclusively competitive with an apparent Ki of 24 mmol/l as shown by Lineweaver-Burk- and Dixon-plot analysis. The specificity of competitive inhibition was studied. L-Glucose which is stereochemically related to myo-inositol in the same way as the D-isomer proved to be an equally potent inhibitor. The hexoses D-galactose, D-mannose and D-fructose inhibited myo-inositol uptake to a minor extent. D-allose and 3-O-methyl-D-glucose had no inhibitory effect indicating that the OH-group of the carbon atom in 3 position is essential for the interaction with the carrier. The acyclic hexitol sorbitol also did not compete. As expected, the aldose reductase blocker sorbinil did not influence the carrier since there is no polyol pathway operating in porcine aortic endothelial cells. In accordance with the results of the uptake experiments, the incorporation of exogenous myo-inositol into membrane phosphatidylinositol was reduced at elevated extracellular glucose levels. The results raise the possibility that hyperglycaemia impairs endothelial inositol supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号