首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seawater samples were collected biweekly from the northern Gulf of Aqaba, Red Sea, for Phytoplankton analysis during the period May 1998 to October 1999. Microscopic counts and HPLC methods were employed. Procaryotic and eucaryotic ultraplankton dominated throughout most of the year, with larger nano- and microplankton making up only 5% of the photosynthetic biomass. Moderate seasonal variations in the 0–125 m integrated Chl a contrasted with a pronounced seasonal succession of the major taxonomic groups, reflecting the changes in the density stratification of the water column: Prochlorococcus dominated during the stratified summer period and were almost absent in winter. Chlorophyceae and Cryptophyceae were dominant during winter mixing but scarce or absent during summer. Diatoms and Synechococcus showed sharp and moderate biomass peaks in late winter and spring respectively, but remained at only low Chl a levels for the rest of the year. Chrysophyceae, Prymnesiophyceae and the scarce Dinophyceae showed no clear seasonal distribution pattern. The implications of alternating procaryotic and eucaryote dominated algal communities for the Red Sea pelagic food web are discussed. Electronic Supplementary Material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
Mature leaves are the primary source of sugars, which give rise to many secondary metabolites required for plant survival under adverse conditions. In order to study the interaction of field‐grown cork oak (Quercus suber L.) with the environment, we investigated the seasonal variation of minerals and organic metabolites in the leaves, using inductively coupled plasma atomic emission spectrometry, elemental analysis and nuclear magnetic resonance spectrometry. Statistical analysis showed that the data strongly correlated with seasonal climate and were divided in three groups corresponding to: (1) spring‐early summer, (2) summer and (3) autumn‐winter. The concentration of N, P, K and leaf ash content were highest in spring (recently formed leaves), reached the minimum during the hot and dry summer and increased slightly during the rainy period of autumn‐winter. Conversely, Na, Mg and Ca concentrations were lowest in spring‐early summer and increased during summer and autumn‐winter, the Ca concentration increasing five‐fold. Two cyclitol derivatives, quinic acid and quercitol were the major organic metabolites of the leaves. Their concentration along the season followed opposite trends. While quinic acid predominated during spring‐early summer, when it contributed 12% to the leaf osmotic potential, quercitol was predominant during autumn‐winter, when its contribution to leaf osmotic potential was about 10%. This different preponderance of the two compounds is expressed by the quercitol/quinic acid ratio, which can be as low as 0.2 in early summer and as high as 9 in winter. Sucrose and glucose concentrations also increased during autumn‐winter. Evidence for the quercitol protective role in plants during stress is discussed, and on the basis of structural similarity, it is suggested that quinic acid could have an identical importance, with a protective role against heat and high irradiance. It is concluded that the marked changes in Q. suber leaf composition throughout the year could have important implications in the plant capacity to endure climatic stress.  相似文献   

3.
Tropical kelp populations are rare and anomalous relicts of shallow‐water populations that existed during glacial periods of cooler oceanographic climate. The endemic Brazilian tropical kelp, Laminaria abyssalis Joly and Oliveira Filho, occurred at depths below 40 m. The seasonal variations in biological aspects of L. abyssalis sporophyte populations and local variations in seawater nutrients and temperature were evaluated. A population was sampled four times between the austral spring of 2005 to winter 2006. Seasonal variations in the population structure and in the tissue content of nitrogen (N), carbohydrate and pigments were observed. Higher density (6.3 individuals m?2), biomass (7.3 kg m?2) and blade area (13 221 cm2) were observed in summer, while the highest percentage of tissue total N (1.6%), carbohydrates (32.9%) and photosynthetic pigments (chlorophyll a = 1.9% and chlorophyll c = 0.4%) were observed in spring. The highest surface area of fertile tissue in L. abyssalis sporophytes (2.36%) was recorded in winter, indicating winter as the season when more investments are made in reproduction. The highest concentrations of total N (6.3 μM) and phosphate (0.6 μM) in seawater were observed in spring and summer, respectively. Seawater temperatures lower than 20°C, which are characteristic of upwelling waters, occurred every month and were most frequent in spring and summer. We show that L. abyssalis invests more in growth in spring and summer and reaches the greatest thallus size and population density in summer. The lower abundance during winter may be related to the lower frequency of temperatures below 20°C and the local seasonal storms that cause turnover of rhodoliths, the main substrate for L. abyssalis.  相似文献   

4.
The proliferation of tench lymphocytes induced by mitogens was studied during the four seasons of the year. Fish were maintained under natural conditions of photoperiod and temperature (mean ± SD: 12±2°C in winter, 22±3°C in spring, 30±3°C in summer and 21±3°C in autumn). Cultures were performed in vitro at 22°C in all seasons and the results were compared. Subsequently, in seasons with extreme water temperatures, cultures in vitro were performed at the same temperature as that of the water (12°C in winter and 30°C in summer) and the results were compared seasonally at the seasonal temperature, i.e. at 22°C in spring, 30°C in summer, 22°C in autumn and 12°C in winter. Phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen were used as mitogens. Studies performed at 22°C as assay temperature in all seasons showed profound seasonal changes: while in spring, summer and autumn the mitogenic response of lymphocytes to phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen was very low, during winter the results obtained were significantly higher. However, when the assays were performed at the corresponding seasonal temperature the differences were not as pronounced between the different seasons, and the mitogenic responses of lymphocytes were found to be the lowest during the winter and the highest during the summer with all mitogens used. This fact suggests that immunosuppression occurs in winter and an immunostimulation occurs in summer. However, the higher response found in winter when assaying at 22°C suggests that this property of lymphocytes needs an assay temperature higher than the in vivo temperature in order to observe accurate mitogenic responses.Abbreviations Con A concanavalin A - cpm counts per minute - LPS E. coli lipolisaccharide - MS222 tricainemethane sulphonate - PBS phosphate-buffered saline - PHA phytohemagglutinin - PWM pokeweed mitogen - SI stimulation index  相似文献   

5.
The main aim of this study was to determine the numbers, population structure and seasonal changes in group structure of argali Ovis ammon karelini Severtzov, 1873 in the Tian-Shan of Kyrgyzstan. The study was carried out within two adjoining areas: the Baralbas River region, and the Ak-Tash River region. Data were collected during three seasons: winter, spring and summer. This population consisted of 42.3% females, 22.2% males, 13.4% yearlings, and 22.1% lambs. Composition and numbers of groups were seasonally changing. Argali occurred predominantly in mixed groups during winter and exclusively in separated groups during summer. The maximum group size decreased from 25% from winter to spring, however, increased during summer.  相似文献   

6.
In order to study changes in the cell-wall composition of growing poplar cambium during the seasonal cycle, cell walls were isolated from the cambium and newly formed vascular tissues of poplar branches at three times during the year (winter, beginning of spring, end of summer). Polysaccharide material was isolated by sequential extraction of the cell walls and analysed. The principal polysaccharides identified were pectins and xylose- and glucose-containing polysaccharides, possibly xylans and (xylo)glucans. Our results indicate changes in the relative quantities of these polysaccharides during the seasonal cycle.  相似文献   

7.
Genetic improvement of forage digestibility, especially utilizing marker assisted selection and recombinant DNA techniques, requires identification of specific biochemical traits and associated genes that impact digestibility. We undertook a study to identify cell wall (CW) traits of lucerne (Medicago sativa L.) stems that were consistently and strongly correlated with in vitro neutral detergent fibre (NDF) digestibility, a measurement that has been shown to correlate with animal performance. Spring and summer harvested lucerne stem material, for 2 years, from 24 individual plants in each of two germplasm sources were analyzed for 16 and 96 h in vitro NDF digestibility, and cell wall concentration and composition (monosaccharide constituents of cellulose, hemicellulose, and pectin; and Klason lignin (KL)) by the Uppsala dietary fibre method using near-infrared reflectance spectroscopy (NIRS). Pearson correlation coefficients were calculated for the relationships among these cell wall traits and with in vitro NDF digestibility. Concentrations of the pectin monosaccharide components were all negatively correlated (r=−0.73 to −0.94) with total cell wall concentration. In contrast, the three most abundant cell wall components glucose (Glc), xylose (Xyl) and Klason lignin were not correlated, or only weakly positively correlated (r<0.35), with cell wall concentration. Cell wall concentration was consistently negatively correlated (r=−0.60 to −0.94) with both 16 and 96 h in vitro NDF digestibility. In contrast, Klason lignin concentration was only marginally correlated (r<0.30) with 16 h in vitro NDF digestibility, but strongly negatively correlated (r=−0.71 to −0.74) with 96 h in vitro NDF digestibility. This is consistent with previous reports which show that lignin affects potential extent of digestion, but not rate. Cell wall glucose and xylose concentrations were inconsistently correlated with fibre digestibility. The monosaccharide components of pectin were consistently positively correlated (r=0.54–0.90) with in vitro NDF digestibility, except for 96 h in vitro NDF digestibility of spring harvested stems. Growth environment (year) and germplasm source had only minor impacts on the preceding correlation patterns, whereas spring versus summer harvests accounted for the inconsistencies observed among correlations for cell wall traits. The results of this study indicate that genetic improvement of fibre digestibility of lucerne stems should target genes that reduce total cell wall concentration, perhaps by reducing the rate of xylem tissue deposition during maturation, and reduce Klason lignin and increase pectin concentrations in the cell wall to improve potential extent and rate of fibre digestibility, respectively.  相似文献   

8.
Organic matter dissolved in thepercolation water of forest soils contributeslargely to element cycling and transport ofnatural and anthropogenic compounds. The wayand extent to which these processes areaffected depends on the amount and the chemicalcomposition of soluble organic matter. Becausethe amount of soluble organic matter variesseasonally with changes in the microbialactivity in soil, it seems reasonable to assumethat there may be also seasonal changes in thechemical composition of dissolved organicmatter. We examined dissolved organic matter inthe seepage waters of organic forest floorlayers over a 27-month period (1997–1999) intwo forest ecosystems, a 160-year-old Scotspine (Pinus sylvestris L.) stand and a90-year-old European beech (Fagussylvatica L.) forest. The forest floorleachates were analysed for bulk dissolvedorganic C, C in hydrophilic and hydrophobicdissolved organic matter fractions,lignin-derived phenols (CuO oxidation),hydrolysable neutral carbohydrates and uronicacids, hydrolysable amino sugars, and stablecarbon isotope composition. In addition, westudied the samples by use of liquid-state13C-nuclear magnetic resonance (NMR)spectroscopy.For both investigated forest sites we foundthat the dissolved organic carbonconcentrations in forest floor leachates werelargest during summer. They peaked after rainstorms following short dry periods (106–145 mgdissolved organic C l–1). The proportionsof C in the hydrophilic fractions were largestin winter and spring whereas in summer andautumn more C was found in the hydrophobicfraction. According to liquid-state 13C-NMR spectroscopy, summer and autumn samples hadlarger abundances of aromatic and aliphaticstructures as well as larger proportions ofcarboxyl groups whereas the winter and springsamples were dominated by resonances indicatingcarbohydrates. Wet-chemical analyses confirmedthese results. Winter and spring samples wererich in neutral carbohydrates and amino sugars.The summer and autumn samples contained morelignin-derived phenols which were also strongeroxidised than those in the winter and springsamples. Seasonal changes of 13C valueswere found to reflect the changes in thechemical composition of dissolved organicmatter. Most negative values occurred whenisotopically light lignin-derived compoundswere abundant and less negative values whencarbohydrates predominated.The different vegetation, age of thestands, and underlying mineral soils resultedin different concentrations of dissolvedorganic carbon and in differences in thedistribution between hydrophobic andhydrophilic organic carbon. Despite of this,the results suggest that the trends in temporalvariations in the composition of dissolvedorganic matter in forest floor seepage waterwere remarkably similar for both sites.Dissolved organic matter in winter and springseems to be mainly controlled by leaching offresh disrupted biomass debris with a largecontribution of bacterial and fungal-derivedcarbohydrates and amino sugars. Dissolvedorganic matter leached from the forest floor insummer and autumn is controlled by thedecomposition processes in the forest floorresulting in the production of stronglyoxidised, water-soluble aromatic and aliphaticcompounds. The chemical composition ofdissolved organic matter in forest floorseepage water in winter and spring indicateslarger mobility, larger biodegradability, andless interaction with metals and organicpollutants than that released during summer andautumn. Thus, the impact of dissolved organicmatter on transport processes may varythroughout the year due to changes in itscomposition.  相似文献   

9.
Dictyocaulus viviparus infections in Rocky Mountain elk (Cervus canadensis of Teton Countywere surveyed by fecal analyses during spring, summer and winter and by fecal analyses and necropsies during fall hunting seasons, 1968-1973. Prevalance of the lungworms was relatively high: 32-70% during the spring; slightly lower, 30-47%, during the summer; 21-39% in the fall; and declined to the annual low of 8-19% during the winter. Conversely, elk summering on Big Game Ridge showed an increase in prevalance of D. viviparus from 1969 to 1973. Decreases in prevalance of lungworms were noted on the National Elk Refuge at Jackson after management changes were effected in 1971.  相似文献   

10.
The paper presents effects of phosphorus deficiency and seasonal variations on nitrogen and carbohydrate metabolism of Japanese mint (Mentha arvensis L. var. piperascens, Holmes). Mint plants were grown in sand cultures under full nutrition and under phosphorus deficiency conditions during winter and summer. Various nitrogen and sugar fractions were determined in the component parts at specified periods of growth stages. Phosphorus deficiency disturbed the nitrogen metabolism at the stages for amide and amino acid formation, which resulted in an accumulation of carbohydrates. The content of total soluble and total nitrogen was higher and that of insoluble nitrogen was lower in summer as compared with winter plants. Of the soluble fractions, the ammonia, amide and nitrate nitrogen were higher and the ‘rest’ nitrogen lower in winter plants. Nitrate formed the highest bulk of the pool of soluble nitrogen in winter, whereas in summer ‘rest’ nitrogen was most abundant. The content of total sugar in winter plants far exceeded that of summer plants, which was wholly due to increase in sucrose content. Glucose was the predominant reducing sugar in both seasons. However, the summer plants were richer in glucose than those from the winter.  相似文献   

11.
Changes in sugar compositions and the distribution pattern ofthe molecular weight of cell wall polysaccharides during indole-3-aceticacid (IAA)-induced cell elongation were investigated. Differentialextraction of the cell wall and gel permeation chroma-tographyof wall polysaccharides indicated that galactans, polyuronides,xylans, glucans and cellulose were present in the azuki beanepicotyl cell wall. When segments were incubated in the absence of sucrose, IAAenhanced the degradation of galactans in both the pectin andhemicellulose fractions, whereas to some extent it enhancedthe polymerization of xylans and glucans in the hemicellulosefraction and an increase in the amounts of polyuronides in thepectin fraction and of -cellulose. In the presence of 50 mMsucrose, IAA caused large increases in the amounts of all thewall polysaccharides, and enhanced the polymerization of galactans,xylans and glucans in the hemicellulose fraction. These results and an important role of galactan turnover incell wall extension are discussed. (Received December 11, 1979; )  相似文献   

12.
To study whether nocturnal bronchial obstruction changes during the year, we assessed the circadian FEV1 variation during four consecutive seasons in 20 children (12 boys; aged 9–12 years) with episodic asthma who were outgrowing their asthma. FEV1 was determined every 4 h between 10:00 and 10:00 during two consecutive days. The last six FEV1 values were submitted to cosinor and coefficient of variation (CV) analyses. The seasonal means (SD) in the group 24 h percent predicted FEV1 was 85.5 (11.4), 81.2 (10.6), 86.0 (11.6), and 82.2 (14.0)% during spring, summer, autumn, and winter, respectively. The difference between the summer and autumn FEV1 values was statistically significant (p < 0.05). The mean (SD) of the circadian amplitude values was 4.1 (4.3), 6.0 (3.8), 4.9 (3.4), and 7.2 (4.1)% during spring, summer, autumn, and winter, respectively. The difference in amplitude between the spring and winter and between the autumn and winter values was statistically significant (p<0.05). CV values of 48 of the 80 (60%) circadian FEV, time series exceeded the average CV of 5% observed in non-asthmatic children studied in our laboratory. There was an unequal distribution during the year in elevated CV values; 6, 17, 10, and 15 of the high CV values occurred, respectively, in the spring, summer, autumn, and winter. These results suggest that nocturnal bronchial obstruction may change seasonally in terms of severity and amplitude in children who have nearly outgrown their asthma. (Chronobiology International, 13(4), 295–303, 1996)  相似文献   

13.
Egg production rates in wild populations of Acartia clausi and Centropages typicus, sampled biweekly in the Gulf of Naples from October 1985 to July 1987, showed marked seasonal fluctuations with maximum values in early spring that proceeded the annual maxima for adult female densities in summer. A positive correlation between chlorophyll a concentrations and egg production was evident only during the early spring phytoplankton bloom. A strong diminution in egg deposition occurred later in spring and continued throughout the summer notwithstanding high chlorophyll concentrations. In winter, when population abundances for adult females were lowest, egg production rates were always higher than in summer. Differences in egg production rates coincided with pronounced morphological changes between summer and winter populations of both species. The most striking of these changes consisted, in winter, in the presence of a dark brown fluid-like mass of granular material that seemed to freely bathe the gonads. The presence of this substance only during periods of elevated egg production suggests that it may enhance egg production rates when the adult population reaches minimum annual levels. Such a mechanism of self-regulation may operate to dampen the effects of environmental variability thereby contributing to maintain a conservative structure in coastal copepod communities.  相似文献   

14.
The comparative study of lipid composition was carried out in four species of marine algae, Ahnfeltia tobuchiensis, Laminaria japonica, Sargassum pallidum, and Ulva fenestrata, as well as a higher plant grass wrack (Zostera marina). Plants were collected in the Japan Sea in spring at 2.9 and 5.5°C and in summer at 23°C. The main lipid components of membranes were determined, and the general patterns of the ratio of phospholipids (PL), glycolipids (GL), betaine (BL), and neutral (NL) lipids were discerned. The relative content of NL in all species (except A. tobuchiensis) was higher in summer. The level of triacylglycerols was as high as 18–37%. The content of individual classes of PL and GL varied between the spring and summer samples, the relative content of PL being higher in spring. In most species, the ratio of PL to GL decreased in summer. The content of free sterols did not depend on the season. The molar ratios of phosphatidylcholine and diacylglycerol-o-(hydroxymethyl)-(N,N,N-trimethyl)homoserine to free sterols varied from 0.9 to 1.7. The seasonal changes of lipid composition were apparently related to macrophyte adaptation to water temperature and to biology of their development.  相似文献   

15.
The occurrence, periodicity and growth of twenty species of unicellular Volvocales on sediments in an acidic pool are described. Minimum populations were recorded in winter, but during the rest of the year standing crops fluctuated rapidly. The greatest species diversity and primary productivity occurred in late spring-early summer and in autumn, when maximum numbers of Chlamydomonas spp. and Chloromonas spp. increased exponentially on the sediments. The chlamydomonads were more numerous in the epipelon than other major algal components such as diatoms, euglenoids, bluegreen algae and desmids. Growth of the chlamydomonad population occurred after the period of maximum diatom standing crop. Evidence shows that rates of primary production were greater in late spring and late summer when species diversity and standing crop or apparent growth rates of unicellular Volvocales were high. Thus these algae which are normally neglected may be more important in primary productivity than previously believed since they grow during periods when larger algae are scarce. Analysis of the data using the multivariate technique of Reciprocal Averaging confirmed seasonal periodicity in this community of epipelic flagellates. It also identified species with distinctive ecological requirements. A relationship between the bicarbonate-alkalinity of the overlying water and the chlamydomonad population was demonstrated by ordination analysis.  相似文献   

16.
Seasonal variations in semen quality, freezability and plasma luteinizing hormone (LH) levels were studied between summer and spring. Semen volume, density and initial sperm motility did not differ significantly between different seasons. Plasma LH decreased between summer and spring but the differences were, however, not significant. Pre-freezing motility did not differ significantly but post-freezing motility varied significantly (P<0.01) between seasons. Post-freezing motility was lowest during summer and highest during winter. It can be concluded that summer spermatozoa may be fragile and cannot withstand freezing stress. To increase reproductive efficiency in buffalo during summer, semen should be frozen during winter and spring and used during hot weather conditions. Seasonal variations in plasma LH levels were insignificant.  相似文献   

17.
Cell-Wall Polysaccharides of Developing Flax Plants   总被引:4,自引:1,他引:3       下载免费PDF全文
Flax (Linum usitatissimum L.) fibers originate from procambial cells of the protophloem and develop in cortical bundles that encircle the vascular cylinder. We determined the polysaccharide composition of the cell walls from various organs of the developing flax plant, from fiber-rich strips peeled from the stem, and from the xylem. Ammonium oxalate-soluble polysaccharides from all tissues contained 5-linked arabinans with low degrees of branching, rhamnogalacturonans, and polygalacturonic acid. The fiber-rich peels contained, in addition, substantial amounts of a buffer-soluble, 4-linked galactan branched at the 0-2 and 0-3 positions with nonreducing terminal-galactosyl units. The cross-linking glycans from all tissues were (fucogalacto)xyloglucan, typical of type-I cell walls, xylans containing (1->)-[beta]-D-xylosyl units branched exclusively at the xylosyl O-2 with t-(4-O-methyl)-glucosyluronic acid units, and (galacto)glucomannans. Tissues containing predominantly primary cell wall contained a larger proportion of xyloglucan. The xylem cells were composed of about 60% 4-xylans, 32% cellulose, and small amounts of pectin and the other cross-linking polysaccharides. The noncellulosic polysaccharides of flax exhibit an uncommonly low degree of branching compared to similar polysaccharides from other flowering plants. Although the relative abundance of the various noncellulosic polysaccharides varies widely among the different cell types, the linkage structure and degree of branching of several of the noncellulosic polysaccharides are invariant.  相似文献   

18.
The objective of this study was to evaluate whether seasonality affects human-assisted reproduction treatment outcomes. For this, 1932 patients undergoing intracytoplasmic sperm injection (ICSI) were assigned to a season group according to the day of oocyte retrieval: winter (n = 435), spring (n = 444), summer (n = 469) or autumn (n = 584). Analysis of variance was used to compare the ICSI outcomes. The fertilization rate was increased during the spring (winter: 67.9%, spring: 73.5%, summer: 68.7% and autumn: 69.0%; p < 0.01). In fact, a nearly 50% increase in the fertilization rate during the spring was observed (odds ratio 1.45, confidence interval 1.20-1.75; p < 0.01). The oestradiol concentration per number of oocytes was significantly higher during the spring (winter: 235.8 pg/mL, spring: 282.1 pg/mL, summer: 226.1 pg/mL and autumn: 228.7 pg/mL; p = 0.030). This study demonstrates a seasonal variability in fertilization after ICSI, where fertilization is higher during the spring than at any other time.  相似文献   

19.
Stomach contents of 296 juvenile chub mackerel (Scomber japonicus Houttuyn, 1782) specimens were examined based on samplings carried out in Izmir Bay (Aegean Sea, Turkey) during 2001. In terms of percentage weight (W%), fishes were the main food during summer and autumn. Thaliaceans (Salpa sp.) constituted the most important food source in winter, whereas planktonic crustaceans (Amphipoda, Copepoda) were the main prey during spring. According to the Bray–Curtis similarity index, diet of the chub mackerel was 64.1% similar during the summer, winter and autumn seasons.  相似文献   

20.
Comstock  J. P.  Mahall  B. E. 《Oecologia》1985,65(4):531-535
Summary Predawn xylem pressure potentials were measured on two California chaparral shrubs, Ceanothus megacarpus and Ceanothus crassifolius, throughout the winter and spring growing season and into the summer drought. On the days xylem pressure potentials were measured, leaf orientation measurements were made on a population of marked leaves from the same shrubs. Predawn xylem pressure potentials decreased from -0.1 MPa in both species to -7.8 and -6.6 MPa in C. megacarpus and C. crassifolius, respectively, between May and August, 1981. Leaf inclinations became more vertical during this period with the greatest change observed in C. crassifolius. This change in leaf inclination was reversible, and, in the late winter and early spring, one year old leaves became more horizontal. Leaf azimuths were random and did not change seasonally. Simulations of solar radiation interception indicated that the increase in leaf inclination associated with summer drought reduced the absorption of solar radiation in August by 6% for C. megacarpus and 20% for C. crassifolius. Standard leaf energy budget calculations suggest that steep leaf inclinations would result in slightly lower leaf temperatures and transpiration rates under summer conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号