首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The stimulation of human tumor cells overexpressing epidermal growth factor receptor (EGFR) with EGF enhances tumor development and malignancy. Therefore, compounds that modulate the EGF-mediated signal inducing apoptosis in EGFR-overexpressing cells would represent a new class of antitumor drug and might be useful in the treatment of a subset of human tumors. In the course of screening for compounds that induce apoptosis in EGFR-overexpressing human epidermal carcinoma A431 cells from secondary metabolites of microorganisms, we found that vacuolar-type H(+)-ATPase (V-ATPase) inhibitors, such as concanamycin B and destruxin E, induced apoptosis only when the cells were stimulated with EGF. The EGF-dependent apoptosis by V-ATPase inhibitors was not observed in other types of human tumor cells which do not overexpress EGFR. The apoptosis in A431 cells was inhibited by anti-FasL antibody which neutralized the cytotoxic effect of FasL, indicating that the Fas/FasL system was involved. The expression of cell surface FasL was upregulated by stimulation with EGF and increased further by V-ATPase inhibitors. Moreover, EGF inhibited cytotoxic Fas antibody-induced apoptosis, whereas V-ATPase inhibitors disrupted the protective effect of EGF on apoptosis in A431 cells. Taken together, these results suggested that V-ATPase inhibitors induced EGF-dependent apoptosis in A431 cells, possibly through both the enhancement of EGF-induced cell surface expression of FasL and the disruption of an EGF-induced survival signal.  相似文献   

2.
3.
Transforming growth factor beta (TGF-beta) increased the phosphorylation of the epidermal growth factor (EGF) receptor and inhibited the growth of A431 cells. Incubation with TGF-beta induced maximal EGF receptor phosphorylation to levels 1.5-fold higher than controls. Phosphorylation increased more prominently (4-5-fold) on tyrosine residues as determined by phosphoamino acid analysis and antiphosphotyrosine antibody immunoblotting. The kinase activity of EGF receptor was also elevated 2.5-fold when cells were cultured in the presence of TGF-beta. The antiproliferative effect of TGF-beta on A431 cells was accompanied by prolongation of G0-G1 phase and by morphological changes. TGF-beta augmented the growth inhibition of A431 cells which could be induced by EGF. In parallel, the specific EGF-induced increase in total phosphorylation of the EGF receptor was also augmented in the presence of TGF-beta. In cells cultured with TGF-beta, the phosphorylation of EGF receptor tyrosines induced by 20-min exposure to EGF was further increased 2-3-fold, suggesting additive effects upon receptor phosphorylation. EGF receptor activation by TGF-beta is characterized by kinetics quite distinct from that induced by EGF and therefore appears to take place through an independent mechanism. The TGF-beta-induced elevation in the phosphorylation of the EGF receptor may have a role in the augmented growth inhibition of A431 cells observed in the presence of EGF and TGF-beta.  相似文献   

4.
Epidermal growth factor (EGF) induced the formation of thin sheetlike extensions (lamellipodia) and filamentous extensions at the edges of colonies of A431 cells. To determine the necessary processes for the induction of the morphological changes mediated by EGF, the effects of a variety of ions on these changes were examined. In a NaCl solution supplemented with CaCl2, MgCl2 and glucose, no EGF-induced morphological changes were observed. However, when the NaCl was replaced with LiCl, fingerlike extensions were formed, but sheetlike extensions were not. Addition of vanadate to the NaCl solution also induced fingerlike extensions in cells treated with EGF. In contrast, sheetlike lamellipodia were formed in EGF-treated cells by the addition of K+ or PO4(3-) to the NaCl solution or by the addition of PO4(3-) to the LiCl solution. These findings indicate that Li+, K+, PO4(3-) and vanadate are involved in the processes of EGF-induced morphological changes. Since vanadate and Li+ have been shown to inhibit phosphatases, an EGF-dependent phosphorylation step may play an important role in the induction of the morphological changes observed.  相似文献   

5.
Gangliosides have been described as modulators of growth factor receptor activity and subsequent cellular function. Due to the lower-pH environment found in tumor cells, ganglosides are thought to be formed (at least to some extent) into their lactone forms. The aim of the study was to analyze the mode of action of the lactone of the ganglioside GM3 on epidermal growth factor (EGF) signaling in human ovarial epidermoid carcinoma A431 cells and cell growth in human oral epidermoid carcinoma KB cells by applying the GM3 lactone analog HK1-ceramide 2, which is stable under hydrolytic conditions. Specific inhibition of EGF-dependent receptor tyrosine phosphorylation was observed by HK1-ceramide 2 at 25 microM, whereas GM3 showed a comparable inhibition at eightfold higher concentrations. In cells exposed to low pH, where GM3 is thought to form its lactone to a higher extent, addition of GM3 showed no further inhibitory effect on EGF-dependent receptor phosphorylation. Similarly to GM3, HK1-ceramide 2 does not affect binding of (125)I-EGF to the cell surface receptor. EGF-dependent growth of KB cells was also found to be inhibited by HK1-ceramide 2 at much lower concentrations compared to GM3. In conclusion, our results indicate that the GM3 lactone analog HK1-ceramide 2 is a specific inhibitor of EGF receptor function and is more potent in reducing EGF-dependent tyrosine phosphorylation of the receptor in A431 cells and in inhibiting EGF-dependent growth of KB cells compared to GM3.  相似文献   

6.
Various derivatives of thiazolidine-diones have been identified as tyrosine protein kinase inhibitors. The epidermal growth factor (EGF) receptor kinase and c-src kinase were inhibited in vitro with IC50 values in the range of 1-7 microM. The v-abl tyrosine protein kinase was not inhibited by thiazolidine-diones. Inhibition was found to be specific for tyrosine protein kinases. Inhibition of serine/threonine protein kinases was not observed. The active derivatives were shown to inhibit EGF-induced receptor autophosphorylation, either in vitro or in intact cells, and were also found to inhibit growth of the EGF-dependent BALB/MK and A431 cell lines (IC50 1-3 microM). Growth of the interleukin-3-dependent myeloid cell line FDC-P1 was inhibited with equal efficiency. Thus, in these cell lines, members of the c-src kinase family are also potential targets for inhibition by the compounds.  相似文献   

7.
Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.  相似文献   

8.
9.
The effects of epidermal growth factor (EGF) on membrane potential were investigated in suspensions of the following three cell types endowed with a large complement of specific receptors: EGFR-T17 (a clone of mouse NIH-3T3 fibroblasts overexpressing EGF receptors); A431 and KB (two human carcinoma lines). In all these lines EGF induced a rapid and marked hyperpolarization constituted by an initial peak (in all three cell lines) and a subsequent sustained plateau phase, concomitant with the well-known increase of [Ca2+]i. The time course and phorbol ester inhibitability of the membrane potential effects were the same as for the [Ca2+]i response. Experiments with Na+-free and chloride-free media excluded a major role of the latter ions in the EGF-induced hyperpolarization. In contrast, experiments with high K+ media, with the monovalent cation ionophore gramicidin and with Ca2+-free media together with either a Ca2+ ionophore (ionomycin, in A431 and EGFR-T17), or an agonist (bradykinin, in A431) addressed to a receptor coupled to phosphoinositide hydrolysis, were consistent with the involvement of Ca2+-activated K+ channels. The EGF-induced hyperpolarization was completely blocked by the K+ channel blocker, quinidine, and unaffected by a variety of other drugs. Patch clamping of individual EGFR-T17 cells confirmed the initial hyperpolarization (from approximately -30 mV, the resting potential, to -60, -80 mV) was due to activation of an outward current. This initial hyperpolarization was followed by fluctuations (period approximately 1 min) persisting as long as the cells could be analyzed. Thus, the changes of membrane potential appear to be not only novel members of the group of early events triggered by EGF in target cells but also long-lasting effects of the growth factor, which continue for unexpectedly long periods of time after EGF application.  相似文献   

10.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

11.
J M Pash  J M Bailey 《FASEB journal》1988,2(10):2613-2618
Cultures of vascular smooth muscle cells superfused with [14C]arachidonic acid synthesized the antiplatelet substance prostacyclin as the major cyclooxygenase product. Prostacyclin synthesis was inactivated by aspirin, which irreversibly acetylates cyclooxygenase. Aspirin-treated cells recovered within 2 h by a process that was blocked by cycloheximide but not by actinomycin D, and that required a serum component identified as epidermal growth factor (EGF). EGF-induced recovery of cyclooxygenase was greatly potentiated by type beta transforming growth factor (TGF-beta). Incubation with EGF and TGF-beta in the 0.1-1.0 nanomolar range stimulated cyclooxygenase recovery up to 20-fold without increasing [35S]methionine incorporation into other cell proteins. Induction of cyclooxygenase by EGF and TGF-beta also was prevented by cycloheximide but not by actinomycin D. EGF-dependent recovery was blocked by preincubation with dexamethasone (2 microM), an effect that was duplicated by pure lipocortin (2-4 micrograms/ml). Incubation of membrane preparations from these cells with EGF selectively activated phosphorylation of a 35-kDa cellular protein that comigrated with lipocortin. The results suggest that cyclooxygenase recovery in aspirin-inactivated vascular smooth muscle cells is mediated by an EGF-dependent translational control that is inhibited by corticosteroids. The findings also provide a new mechanism whereby corticosteroids suppress inflammatory prostaglandins.  相似文献   

12.
Epidermal growth factor (EGF) induces rapid rounding of A-431 human epidermoid carcinoma cells in Ca(++)-free medium. Cell rounding is not induced by a variety of other polypeptide hormones, antiserum to cell membranes, local anesthetics, colchicine, cytochalasin B, or cyclic nucleotides. However, trypsin, like EGF, induces rounding of A- 431 cells in the absence of Ca(++). Both trypsin- and EGF-induced rounding are temperature dependent, appear to be energy dependent, and are inhibited by cytochalasins, suggesting that the active participation of microfilaments in cell rounding. However, a medium transfer experiment suggests that EGF-induced rounding is not attributable to secretion of a protease, and a number of serine protease inhibitors have no effect on the EGF-induced rounding process. Cell rounding is not attributable to the slight stimulation by EGF of the release of Ca(++) that is observed in the Ca(++)-free medium, as stimulation of such release by the ionophore A23187 neither induces cell rounding nor blocks EGF-induced rounding. Cells that have rounded up after treatment with EGF or trypsin spread out upon addition of Ca(++) to the medium, even in the continuing presence of EGF or typsin. Like the cell-rounding process, the cell-spreading process is temperature dependent, appears to be energy dependent, and is inhibited by cytochalasin B. Thus, EGF does not destroy the ability of the cell to spread; rather, in the presence of the EGF (or trypsin), cell spreading and the maintenance of the flattened state become dependent on external Ca(++). Because untreated cells remain flattened in the absence of Ca(++), the data suggest that EGF may disrupt Ca(++)-independent mechanisms of adhesion normally present in A-431 cells.  相似文献   

13.
Monoclonal antibodies against phosphotyrosine were used to study tyrosine phosphorylation in human epidermal carcinoma A431 cells in vivo. Incubation of A431 cells with the epidermal growth factor (EGF) leads to tyrosine phosphorylation of the EGF receptor; the phosphotyrosine content in cellular EGF receptors increases 50-100-fold in the presence of the growth factor. The maximum level of the receptor autophosphorylation is reached on the 5th min and is then held constant during 90-min incubation with EGF. After preincubation of A431 cells with phorbol-12-myristoyl-13-acetate (PMA) or calcium ionophore A23187 the receptor autophosphorylation decreases significantly. After addition of A23187 and EGTA to the preincubation medium the phosphotyrosine content in cellular EGF receptors stimulated by the growth factor reaches the control level i.e., that observed in the absence of the ionophore. After preincubation of cells in the presence of phorbol ester and H-7 (protein kinase C inhibitor) the level of EGF receptor autophosphorylation does not practically differ from that of control.  相似文献   

14.
Previous studies have shown that EGF can induce the tyrosine phosphorylation of caveolin-1 in murine fibroblasts following ErbB1 (EGF receptor) mutation or overexpression, but the cell signaling events linking EGF action with caveolin phosphorylation are not fully established. In this regard, we examined multiple human carcinoma cell lines that express various ErbB family members, including A431 epidermoid carcinoma cells and several squamous carcinoma cell lines. In all cases, EGF treatment induced the tyrosine phosphorylation of caveolin-1 in a time- and EGF dose-dependent manner, and immunoblotting analysis revealed that this phosphorylation occurred at tyrosine-14. The EGF-dependent phosphorylation of caveolin-1 was observed at low temperatures (4 degrees C) and was enhanced by caveolae-disrupting agents (cyclodextrin), suggesting that this EGF-dependent system is in a low temperature-stable arrangement that allows for their interaction under conditions where mobility in the membrane is altered. To further assess the events linking EGF action with caveolin phosphorylation, we evaluated the ligand specificity of these responses and their dependence on known effectors of EGF receptor function. We observed that EGF and HB-EGF, but not heregulin, promoted caveolin-1 phosphorylation in A431 cells, suggesting that these responses are linked to EGF receptor activation and not solely occurring via the activation of other endogenous ErbB family members. In addition, the EGF-induced phosphorylation of caveolin-1 in A431 cells was blocked by the Src kinase antagonists PP1 and PP2, but not by the MEK inhibitor PD98059, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin, or cytoskeleton-disrupting agents, such as cytochalasin D, colchicine, and nocadazole. Altogether, these data indicate that multiple human carcinoma cells exhibit an EGF receptor-dependent tyrosine phosphorylation of caveolin-1 and that this process is sensitive to Src family kinase inhibitors. These observations support a role for caveolin tyrosine phosphorylation in the profile of cellular responses by which Src potentiates cancer progression following EGF receptor overexpression.  相似文献   

15.
Protein tyrosine kinase blockers of the tyrphostin family inhibited the EGF-dependent proliferation of human and guinea pig keratinocytes grown in culture and induced their growth arrest. These blockers also significantly inhibited the growth of epidermal keratinocytes, but not of dermal cells, in whole skin organ culture from both guinea pig and human origin. The antiproliferative activity of these tyrphostins correlated quantitatively with their potency as inhibitors of EGF receptor autophosphorylation and the EGF-dependent protein phosphorylation of intracellular target proteins in the keratinocyte. Furthermore, no significant cell cytotoxicity or reduction in serine and threonine phosphorylation of many intracellular polypeptides were observed upon incubation of the cells with tyrphostins like AG213. The complete growth arrest induced by the tyrphostins is fully reversible and upon their removal the keratinocytes resumed their growth with the original growth rate. Because of the nontoxic nature of these compounds and their growth-arresting properties, we suggest their use as agents to treat hyperproliferative conditions of human skin.  相似文献   

16.
17.
The cytosolic fractions from epidermal growth factor (EGF)-treated A431 cells exhibit a marked increase in activities of ATP.Mg-dependent protein phosphatase and its activating factor (protein kinase FA) when compared to controls in the absence of EGF. By contrast, the Triton X-100-solubilized membrane fractions from the same EGF-treated cells exhibit a corresponding decrease in protein kinase FA activity. The EGF-dependent activation of protein kinase FA and ATP.Mg-dependent protein phosphatase occurred within physiological concentrations of EGF (ED50 = 5 x 10(-10) M). The changes of kinase and phosphatase activities which were measured concomitantly exhibit very similar characteristics as to EGF sensitivity and time dependence. The EGF-induced kinase and phosphatase activation occurred very rapidly, reaching the maximal activity levels within 3 min. Moreover, the EGF effect is transient; both EGF-stimulated phosphatase and kinase activities returned to control levels within 30 min. Taken together, the results suggest that EGF may induce the activation of kinase FA in the membrane and thereby promotes the activation of ATP.Mg-dependent phosphatase in the cytosol. Exposure of A431 cells to exogenous phospholipase C also resulted in the activation of endogenous kinase FA and ATP.Mg-dependent phosphatase in a similar pattern produced by EGF. This further suggests that phospholipase C can mimic EGF to mediate the activation of kinase FA and ATP.Mg-dependent phosphatase in A431 cells. By its dual role as a multisubstrate protein kinase and as an activating factor of multisubstrate protein phosphatase, protein kinase FA may represent a transmembrane signal of EGF.  相似文献   

18.
Epidermal growth factor (EGF) is a well known mitogen, but it paradoxically induces apoptosis in cells that overexpress its receptor. We demonstrate for the first time that the EGF-induced apoptosis is accelerated if NF-kappaB is inactivated. To inactivate NF-kappaB, human epidermoid carcinoma cells (A431) that overexpress EGF receptor were stably transfected with an IkappaB-alpha double mutant construct. Under the NF-kappaB-inactivated condition, A431 cells were more sensitive to EGF with decreased cell viability and increased externalization of phosphatidylserine on the cell surface, DNA fragmentation, and activation of caspases (3 and 8 but not 9), typical features of apoptosis. These results were further supported by the potentiation of the growth inhibitory effects of EGF by chemical inhibitors of NF-kappaB (curcumin and sodium salicylate) and the protective role of RelA evidenced by the resistance of A431-RelA cells (stably transfected with RelA) to EGF-induced apoptosis. EGF treatment or ectopic expression of RelA in A431 cells induced DNA binding activity of NF-kappaB (p50 and RelA) and the expression of c-IAP1, a downstream target of NF-kappaB. A431-RelA cells exhibited spontaneous phosphorylation of Akt (a downstream target of phosphatidylinositol 3-kinase and regulator of NF-kappaB) and EGF treatment stimulated it further. Blocking this basal Akt phosphorylation with LY294002, an inhibitor of phosphatidylinositol 3-kinase, did not affect their viability but blocking of EGF-induced phosphorylation of Akt sensitized the otherwise resistant A431-RelA cells to EGF-mediated growth inhibition. Our results favor an anti-apoptotic role for NF-kappaB in the regulation of EGF-induced apoptosis.  相似文献   

19.
Properties of primary mouse myoblasts expanded in culture   总被引:1,自引:0,他引:1  
We found that the convergently epidermal growth factor (EGF)-induced signal and the collagen-induced signal activate mitogen-activated protein kinase (MAPK), which induces migration. We examined the signaling mechanisms of EGF-induced cell migration on collagen using the A431 carcinoma cell. EGF (10 ng/ml) induced migration on collagen, but inhibited proliferation. Using a MAPK cascade inhibitor, PD98059, it was shown that EGF-induced migration on collagen was mediated by MAPK whereas EGF-induced migration on fibronectin and vitronectin was not. PD98059 also showed that activation of MAPK induced by EGF enhanced the adhesiveness of A431 cells to collagen. By Western blotting analysis, the kinetics of MAPK phosphorylation induced by EGF and collagen was examined separately, and convergently. First of all, EGF without collagen caused transient MAPK phosphorylation. Collagen without EGF caused MAPK to be immediately and transiently dephosphorylated, and rephosphorylated followed by sustained hyperphosphorylation. EGF together with collagen caused an immediate, and sustained, hyperphosphorylation. These facts suggest that the transient MAPK dephosphorylation induced by collagen is required for migration in order to maintain an appropriate level of sustained phosphorylation. Furthermore, we found that adhesion of A431 cells to collagen was blocked by the anti-beta1 integrin antibody or by the mixed antibodies composed of anti-alpha1, -alpha2, and -alpha3 antibodies, indicating that collagen-induced MAPK phosphorylation was mediated through alpha1beta1, alpha2beta1, and alpha3beta1 integrins.  相似文献   

20.
Glycosphingolipids added exogenously to 3T3 cells in culture were shown to inhibit cell growth, alter the membrane affinity to platelet-derived growth factor binding, and reduce platelet-derived growth factor-stimulated membrane phosphorylation (Bremer, E., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984) J. Biol. Chem. 259, 6818-6825). This approach has been extended to the epidermal growth factor (EGF) receptor of human epidermoid carcinoma cell lines KB and A431. GM3 and GM1 gangliosides inhibited both KB cell and A431 cell growth, although GM3 was a much stronger inhibitor of both KB and A431 cell growth. Neither GM3 nor GM1 had any affect on the binding of 125I-EGF to its cell surface receptor. However, GM3 and, to a much lower extent, GM1 were capable of inhibiting EGF-stimulated phosphorylation of the EGF receptor in membrane preparations of both KB and A431 cells. Further characterization of GM3-sensitive receptor phosphorylation was performed in A431 cells, which had a higher content of the EGF receptor. The following results were of particular interest. (i) EGF-dependent tyrosine phosphorylation of the EGF receptor and its inhibition by GM3 were also demonstrated on isolated EGF receptor after adsorption on the anti-receptor antibody-Sepharose complex, and the receptor phosphorylation was enhanced on addition of phosphatidylethanolamine. (ii) Phosphoamino acid analysis of the EGF receptor indicated that the reduction of phosphorylation induced by GM3 was entirely in the phosphotyrosine and not in the phosphoserine nor phosphothreonine content. (iii) The inhibitory effect of GM3 on EGF-dependent receptor phosphorylation could be reproduced in membranes isolated from A431 cells that had been cultured in medium containing 50 nmol/ml GM3 to effect cell growth inhibition. The membrane fraction isolated from such growth-arrested cells was found to be less responsive to EGF-stimulated receptor phosphorylation. These results suggest that membrane lipids, especially GM3, can modulate EGF receptor phosphorylation in vitro as well as in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号