首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corticotropin (ACTH) or cholera-toxin-induced cAMP production by cultured bovine adrenal cells increased progressively between days 0 and 7 of culture. Angiotensin II (A-II), which inhibited both basal and ACTH-stimulated adenylate cyclase of crude adrenal membranes, had no effect on ACTH-induced or cholera-toxin-induced cAMP production by fresh isolated cells (day 0) but progressively potentiated the stimulatory action of both effectors from day 0----1 to day 7 of culture. In contrast, phorbol ester had a potentiating effect on fresh isolated cells. Pretreatment of cells with pertussis toxin enhanced the potentiating effect of A-II on cells between 0 and 3 days of culture, but not after 7 days. ADP-ribosylation by cholera toxin (ribosylating alpha s proteins) or pertussis toxin (alpha i proteins), of adrenal membranes prepared from fresh isolated or cultured cells revealed an increase in alpha s and a dramatic decrease in alpha i, the ratios alpha i/alpha s on days 0, 3 and 7 of culture were 4, 0.6 and 0.1 respectively. These results indicate that (a) A-II had a double effect on ACTH-induced or cholera-toxin-induced cAMP production: one inhibitory mediated by Gi, the other stimulatory mediated by protein kinase C activation; this could explain the lack of apparent effect of A-II on fresh cells; (b) the progressive decrease of alpha i might be responsible for the appearance of the potentiating effect of A-II whereas the progressive increase of alpha s could explain the enhanced responsiveness to ACTH or cholera toxin of cultured cells.  相似文献   

2.
Phorbol ester (PMA) potentiates ACTH-induced cAMP production by both fresh isolated and 7-day-old cultured adrenal cells, but the effect on cultured cells was greater than in fresh cells. In cultured cells the potentiating effects of PMA were dose-dependent and were observed at each effective dose of ACTH without modification of the ED50 for this hormone. These effects of PMA do not seem to be exerted through a modification of the alpha subunit of Gi since pretreatment of the cells with Bordetella pertussis toxin did not modify the action of PMA and since the amount of alpha i in 7-day-old cultured cells was ten times lower than in fresh cells, while the potentiating effect was lower in the latter. Moreover, since PMA still exerted its potentiating action in cells stimulated by maximal concentration of cholera toxin or forskolin either alone or in combination with ACTH, it is likely that its action is not mediated exclusively by the alpha subunit of Gs. Taken together, the present results and those of the literature suggest that this potentiating effect of phorbol ester on effector-induced cAMP production might be mediated by inhibition of the beta-subunit of G proteins.  相似文献   

3.
M P Mattson  J J Mrotek 《Steroids》1985,46(1):619-637
Using cultured Y-1 mouse adrenal tumor cells which produce 20 alpha-hydroxy-4-pregnen-3-one (20-DHP), it was found that 0.01 mM corticosterone and deoxycorticosterone increased basal and inhibited ACTH-induced 20-DHP production during consecutive 30 and 120 min incubations. Steroid effects were concentration-dependent and reversible. Six other steroids tested did not stimulate 20-DHP production and varied in ability to inhibit ACTH-stimulated steroidogenesis. Experiments demonstrated that 20-DHP production following treatment with cholera toxin, N,0'-dibutyryl cyclic AMP (dbcAMP), or pregnenolone was not inhibited by exogenous steroids. Corticosterone (0.01 mM) increased basal and inhibited ACTH-induced intracellular cyclic AMP (cAMP) production. Cytochalasin D, a microfilament perturbing agent, inhibited steroid-stimulated 20-DHP production, suggesting that ACTH and steroid stimulation mechanisms were similar. These findings taken together suggest that exogenous steroids can alter steroidogenesis by modifying plasma membrane adenylate cyclase activity.  相似文献   

4.
The plant lectins, concanavalin A (conA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA) stimulate steroidogenesis in cultured adrenal tumor cells. ConA maximally stimulated steroidogenesis at 100 μg/ml following an approximate 4 h lag phase. ConA stimulation was completely inhibited by α-methyl-d-mannopyranoside and the WGA effect was prevented by N-acetyl-d-glucosamine. It was also found that conA alone did not cause a measurable increase in either intra- or extracellular cyclic adenosine 3′5′-monophosphate (cAMP) production. In addition, conA when added simultaneously with adrenocorticotropin (ACTH) doubled the intra- and extracellular cAMP production over controls treated with ACTH alone. This enhancement effect was dose dependent. When Y-1 cells were preincubated with conA and then treated with either ACTH or cholera enterotoxin (CT) there was a dose- and time-dependent inhibition of induced cAMP production. In the case of CT, the inhibitory effect occurred even with simultaneous addition of conA and CT. This effect was reversed by addition of both α-methyl-d-mannopyranoside and washing with Eagle's minimal essential medium (MEM) 1 h after CT had bound to its receptor. This reversal was not apparent for the inhibitory effect of conA on ACTH-induced cAMP production which occurred after 2 h of preincubation with conA. These results demonstrate that conA, as well as the other plant lectins, interact with specific membrane receptors to reversibly stimulate steroid production as well as enhancing or inhibiting ligand-induced cAMP production in cultured adrenal tumor cells.  相似文献   

5.
The aim of this study was to determine the direct effect of a wide range of concentrations of lipopolysaccharide (LPS) of Escherichia coli O111:B4 on fasciculata-reticularis cells in primary cultures. In short-term cultures of fasciculata-reticularis cells, the presence of low (1-10 microg/ml) doses of LPS in the medium produced a decrease in ACTH-induced corticosterone secretion, in a dose-dependent manner and independent of the culture medium. The corticosterone production stimulated by db-cAMP was slightly decreased by the presence of LPS in culture medium, while the pregnenolone induced corticosterone biosynthesis was not modified. LPS modified the binding of [125I]-Tyr23-ACTH to the fasciculata-reticularis cell membrane and the signal transduction pathway, as LPS reduced ACTH-induced cAMP production. In long-term cultures, the presence of LPS in the medium produces a decrease in the specific binding of [125I]-Tyr23-ACTH, while the presence of ACTH in the culture medium produced an increase in its specific binding. The use of high doses of LPS (100-250 microg/ml) has helped to clarify some aspects of the LPS action. These doses of LPS severely inhibited ACTH-induced corticosterone production, and clearly reduced the corticosterone production stimulated by db-cAMP and the binding of ACTH to its receptors. In long-term cultures, LPS decreased the number of ACTH receptors, an effect that was reversed by subsequent exposure to ACTH. These results indicate that LPS exerts a direct action on fasciculata-reticularis cells and a model of the mechanism of LPS action is proposed.  相似文献   

6.
Dominant mutation Agouti yellow (AY) leads to ectopic overexpression of the Agouti gene and yellow coat color in mice. Furthermore, the mutation Ay increased adrenal response to emotional stress. The study assessed whether pleiotropic effect of the mutation Ay on adrenals function was dependent on sex and age. 3- and 15-week old female C57B1/6J mice of two agouti-genotypes: Ay/a (ectopic Agouti-gene overexpression) and a/a (absence of Agouti-protein), were investigated. Cyclic AMP level (adenylate cyclase activity) and corticosterone production in adrenal isolated cells stimulated by ACTH and dibutyrul cAMP (db-cAMP) were measured. ACTH increased cAMP accumulation to the same extent in Ay/a- and a/a-mouse adrenal cells of both ages. The dibutyrul cAMP-induced corticosterone production was higher in Ay/a than in a/a-mouse adrenal cells of both ages. The ACTH-induced corticosterone production in 3-week- old Ay/a-m/CQ was lower and in 15-week old Ay/a-mice was higher than in a/a-mice of the respective ages. The ACTH- and db-cAMP-induced steroidogenesis was not changed in Ay/a-mice and decreased in a/a-mice with age. Thus, in females as well as in males, the mutation Agouti yellow did not affect adenylate cyclase activity, increased db-cAMP-induced corticosterone production and disturbed development of adrenal cortex.  相似文献   

7.
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.  相似文献   

8.
In the present study we have investigated the cyclic AMP (cAMP) responses to angiotensin II (AII) in isolated rat adrenal glomerulosa cells and in purified membrane preparations. When cells were incubated with 10 nM AII cAMP cellular content increased 2-fold at 5 min and 3-fold at 10 min, then rapidly declined. The effect of AII was dose-dependent with EC50 of 4 nM and was mediated by AII receptors as shown by the pharmacological characterization with AII analogs and AII receptor antagonists. Since AII inhibited cAMP formation in purified adrenal cortical membrane preparations, the stimulatory effect observed in intact cells could be indirect and mediated by other intracellular events.  相似文献   

9.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

10.
An extract of porcine thyroid gland in 0.1 N acetic acid exerted dose-dependent potentiation of ACTH-induced corticosterone production in isolated rat adrenal cells. The extract by itself manifested no steroidogenic activity. Upon gel-filtration of the extract, potentiating activities were demonstrated in three main peaks with molecular weights of about 10,000, 5,000 and 2,000. These findings indicate the presence of heterogeneous forms of ACTH-potentiating factors in the thyroid. Significant enhancement of ACTH-induced steroidogenesis was readily apparent with three gel-filtration fractions at a lower concentration of ACTH (4.75 pM). At this concentration, dose-dependent potentiation was observed with these three fractions. Enhanced corticosterone production responses by cells preincubated with the thyroid extract were observed and the results indicated the existence of potentiating mechanisms other than inhibition of ACTH proteolysis. The lack of T4, T3 and thyroglobulin in this activity suggests that the activity resides in other constituents of the thyroid.  相似文献   

11.
The fate of cyclic AMP (cAMP), dibutyryl-cAMP (Bt2-cAMP), and the (Sp)-isomer of adenosine 3',5'-monophosphorothioate [(Sp)-cAMPS] was studied in the PC12 culture medium by means of HPLC. In the absence of PC12 cells, cAMP and Bt2-cAMP were rapidly degraded by nonspecific esterases and cyclic nucleotide phosphodiesterase both originating from the serum commonly used as a culture medium ingredient, whereas (Sp)-cAMPS was completely stable. Since 5'-AMP, adenosine, inosine, and hypoxanthine appeared in the culture medium after incubation with cAMP or Bt2-cAMP, we have determined their effect on nerve growth factor (NGF)-induced neurite outgrowth. 5'-AMP, adenosine, and inosine were indeed potent agents in producing a potentiating effect on NGF-induced early neurite outgrowth at a concentration of 1 mM. Thus, cAMP metabolites had the capacity to induce an effect that has been described as cAMP-specific. In serum-free culture medium and in the presence of cells, all cyclic nucleotides were taken up by PC12 cells. Uptake was highly correlated with the hydrophobic nature of the compounds, and was accompanied by a simultaneous excretion of metabolites. On incubation with cAMP, NGF had a pronounced effect on the metabolic pattern found in the culture medium. In particular, dephosphorylation of 5'-AMP was specifically enhanced. This effect of NGF on the degradation of cAMP was also apparent when cAMP metabolites were incubated with PC12 cells. Whereas 5'-AMP degradation was greatly increased, NGF had no effect on the metabolism of the other purine compounds.  相似文献   

12.
Different signal transduction pathways, i.e. Ca2+- and cAMP-dependent, involved in mediating the effects of angiotensin II (AII) were investigated separately using the short-circuit current (Isc) technique and radioimmunoassay (RIA) in a cystic fibrosis pancreatic cell line (CFPAC-1) which exhibits defective cAMP-dependent but intact Ca2+-dependent anion secretion. The AII-induced Isc could be inhibited by the specific antagonist for AT1, losartan (1 microM), but not the antagonist for AT2, PD123177 (up to 10 microM). The AII-induced Isc was also reduced by the treatment of the cells with a Ca2+ chelator, BAPTA-AM (100 microM), indicating a dependence of the AII-induced anion secretion on the intracellular Ca2+. Treatment of the cells with pertussis toxin (0.1 microg/ml) or a phospholipase C (PLC) inhibitor, U73122 (5 microM), resulted in a substantial reduction in the AII-induced Isc indicating involvement of Gi and PLC in the Ca2+-dependent anion secretion. RIA measurements showed that AII stimulated an increase in cAMP production which could be reduced by losartan, pertussis toxin and U73122 but not BAPTA-AM. In addition, inhibitors of cyclooxygenase, indomethacin (10 microM) and piroxicam (10 microM), did not have any effect on the AII-induced cAMP production, excluding the involvement of prostaglandins. Our results suggest that both AII-stimulated cAMP and Ca2+-dependent responses are mediated by the AT1 receptor and Gi-coupled PLC pathway. However, the AII-stimulated cAMP production in CFPAC-1 cells is not dependent on Ca2+ or the formation of prostaglandins.  相似文献   

13.
The cellular mechanism by which the angiotensin II (AII) agonist, Sar1-AII, inhibits production and release of angiotensinogen in human hepatoma HepG2 cells was examined. Pretreatment of HepG2 cells with pertussis toxin attenuated the ability of Sar1-AII to block angiotensinogen production. This effect could be correlated with the in situ ADP-ribosylation of a protein(s) of apparent molecular weight 39,000-41,000 on SDS-PAGE, and attenuation of the ability of Sar1-AII to inhibit cAMP accumulation. The role of cAMP in angiotensinogen production was examined. A transient increase in cAMP accumulation above basal could be evoked by forskolin (8-fold) or by glucagon (5-fold) using insulin-deficient media. Although neither forskolin nor glucagon had a significant effect on angiotensinogen production agents producing a sustained increase in intracellular cAMP (8-bromo-cAMP, dibutyryl-cAMP, cholera toxin) were able to increase angiotensinogen production. Although these data indicate that intracellular cAMP is a regulatory factor in angiotensinogen production other evidence suggests that modulation of intracellular cAMP is not entirely responsible for the effects of Sar1-AII.  相似文献   

14.
Effects of lithium on the hypothalamo-pituitary-adrenal axis   总被引:1,自引:0,他引:1  
The effect of lithium on the hypothalamo-pituitary-adrenal axis was studied in vivo and in vitro. The levels of plasma vasopressin, ACTH and corticosterone increased after the administration of lithium (LiCl 4 mmol/kg BW, 11 days) in rats, while the tissue vasopressin concentration in the median eminence, the rest of the hypothalamus and the posterior pituitary was decreased. The CRF concentration in the posterior pituitary increased markedly, but it did not change significantly in the median eminence or the rest of the hypothalamus. The elevated plasma ACTH level might be at least partly due to the increased vasopression secretion. Lithium stimulated ACTH secretion per se and also enhanced vasopressin-induced ACTH secretion in cultured pituitary cells and in half pituitary incubations, while it did not affect CRF-induced ACTH secretion. Lithium inhibited CRF-induced cAMP accumulation in half pituitary incubations, while lithium and vasopressin did not affect cAMP accumulation per se or even when administered together. The results suggest that lithium-induced ACTH release is via a cAMP-independent mechanism. Thus, it is possible that lithium stimulates ACTH release by acting directly on the corticotroph, stimulating vasopressin release and potentiating vasopressin-induced ACTH release.  相似文献   

15.
Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.  相似文献   

16.
Fluid and ion secretion in the gallbladder is mainly triggered by the intracellular second messenger cAMP. We examined the action of bile salts on the cAMP-dependent pathway in the gallbladder epithelium. Primary cultures of human gallbladder epithelial cells were exposed to agonists of the cAMP pathway and/or to bile salts. Taurochenodeoxycholate and tauroursodeoxycholate increased forskolin-induced cAMP accumulation to a similar extent, without affecting cAMP basal levels. This potentiating effect was abrogated after PKC inhibition, whereas both taurochenodeoxycholate and tauroursodeoxycholate induced PKC-alpha and -delta translocation to cell membranes. Consistent with a PKC-mediated stimulation of cAMP production, the expression of six adenylyl cyclase isoforms, including PKC-regulated isoforms 5 and 7, was identified in human gallbladder epithelial cells. cAMP-dependent chloride secretion induced by isoproterenol, a beta-adrenergic agonist, was significantly increased by taurochenodeoxycholate and by tauroursodeoxycholate. In conclusion, endogenous and therapeutic bile salts via PKC regulation of adenylyl cyclase activity potentiate cAMP production in the human gallbladder epithelium. Through this action, bile salts may increase fluid secretion in the gallbladder after feeding.  相似文献   

17.
The effect of cAMP on ATP-induced intracellular Ca+ mobilization in cultured rat aortic smooth muscle cells was investigated. Treatment of cells for 3 min at 37 degrees C with dibutyryl cAMP, a membrane-permeable analogue of cAMP, at concentration up to 500 microM resulted in 1.5- to 1.7-fold increase in the peak cytosolic Ca2+ concentration when cells were stimulated with 3 to 200 microM ATP either in the presence or absence of extracellular Ca2+. Similar results were obtained when 0.5 mM 8-Br-cAMP or 10 microM forskolin was used instead of dibutyryl cAMP. In contrast to the Ca2+ response, dibutyryl cAMP did not affect ATP-induced formation of inositol trisphosphate (IP3). Furthermore, the dibutyryl cAMP treatment did not affect the size of the Ca2+ response elicited by 10 microM ionomycin. These results suggest that intracellular cAMP potentiates the ATP-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ store(s), rather than by increasing the ATP-induced production of IP3 or by increasing the size of the intracellular Ca2+ store. Using saponin-permeabilized cells, we have shown directly that cAMP enhances Ca2+ mobilization by potentiating the Ca2+-releasing effect of IP3 from the intracellular Ca2+ store.  相似文献   

18.
The mechanisms of effect of adrenocortricotropic hormone on pain sensitivity were studied in anaesthetized Sprague-Dawley male rats. Systemic ACTH administration increased the pain thresholds (from 3 min up to the 30 min after injection) in rats with normal production of hormones. The initial stage of ACTH analgesic effect was fully eliminated by blockade of opiate receptors, ACTH-induced reaction was observed only from 15 up to 30 min after injection. In rats with deficiency of glucocorticoids production, the duration of ACTH-induced analgesic effect decreased to 15 min. The analgesic effect was completely prevented by combination of blockade of glucocorticoids production and blockade of opiate receptors. Thus the ACTH-induced analgesic effect is provided at least by two mechanisms: 1) appearing during the first minutes after injection (from 3 min up to 15 min) and mediated by opiate receptors rather than glucocorticoids, and 2) appearing from 15 min up to 30 min after injection and mediated by glucocorticoids but not opiate receptors.  相似文献   

19.
It has been documented that arginine vasopressin (AVP) and prostaglandin E(2) (PGE(2)) regulate water reabsorption in renal tubular cells. The present study was attempted to delineate the downstream signaling of AVP and PGE(2) in a cortical collecting duct cell line (M-1 cell). Using RT-PCR, we detected mRNA for V2 and VACM-1 but not for V1a and AII/AVP receptors of AVP. Furthermore, neither AVP nor V2 receptor agonist and antagonist alter cellular cAMP. These together with unchanged cellular Ca(2+) by AVP suggested that AVP pathway was not operating in M-1 cells. All four classical PGE(2) receptors with EP3 and EP4 as the most prominent were detected in M-1 cells. PGE(2), 11-deoxy-PGE(1) (EP2 and EP4 agonist), and 17-phenyl-trinor-PGE(2) (EP1 agonist) increased cellular concentration of cAMP. There was no effect of PGE(2) or EP1 agonist on cellular Ca(2+). These findings provide evidence of the involvement of PGE(2) cascade in M-1 cells. M-1 cells were capable of synthesizing nitric oxide (NO). Although individual cytokines did not affect NO production, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma elevated NO concentration to 4.5-fold of the control. Addition of PGE(2) and db-cAMP to the cytokine mixture further increased NO production to 7.0- and 9.8-fold, respectively, of that seen in non-treated cells. PGE(2) or db-cAMP alone, however, had no effect on NO production. The results of the study led us to speculate that enhanced production of cAMP via PGE(2) signaling pathway in M-1 cells could either stimulate or attenuate water reabsorption in renal tubule. While an increase in cAMP alone may enhance water reabsorption, a concomitant increase in cAMP and cytokines may inhibit water reabsorption in renal tubule.  相似文献   

20.
The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号