首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-mediated endocytosis via coated pits is modulated by the activity of protein kinases and protein phosphorylation. We examined the effects of the potent protein kinase inhibitor staurosporine (SSP) on endocytosis of the asialoglycoprotein (ASGP) receptor in HepG2 cells. Staurosporine caused a rapid (<2 min) inhibition of ligand internalization from the cell surface. In contrast the rate of receptor exocytosis from intracellular compartments to the cell surface was not altered (t1/2 = 8 min). This resulted in increased ASGP receptors at the plasma membrane (140% of control) while the total number of receptors per cell was unchanged. Receptor up-regulation was half-maximal at 30 nM SSP. At this concentration staurosporine also inhibited the internalization of iodinated transferrin by HepG2 cells and SK Hep-1 cells, another human hepatoma-derived cell line. Staurosporine was without effect on the non-receptor-mediated uptake of Lucifer yellow by pinocytosis. We investigated the possible involvement of protein kinase C in the inhibitory effects of staurosporine on receptor endocytosis. The active protein kinase C inhibitor H7 did not inhibit ASGP receptor internalization. Furthermore depletion of cellular protein kinase C by overnight incubation with 1 μM phorbol myristate acetate did not abrogate the SSP effect. Together these data suggest that the mechanism of SSP action is independent of the inhibition of protein kinase C. In conclusion staurosporine is a potent and rapid inhibitor of receptor trafficking which is specific for receptor internalization from the plasma membrane.  相似文献   

2.
Staurosporine induced the association of purified protein kinase C (PKC) with inside-out vesicles from erythrocyte membranes. This effect was Ca2+ and concentration dependent, and maximum PKC translocation was observed at 50 nM staurosporine and 0.5 microM Ca2+, or higher. A significant effect of staurosporine was already obtained at free Ca2+ concentrations in the range found in resting cells. Under these conditions, the PKC activator 4-phorbol 12,13-dibutyrate was by itself inactive, but enhanced translocation by staurosporine. Protein phosphorylation by staurosporine-translocated PKC was inhibited in the presence or absence of phorbol esters. Translocation and inhibition of PKC occurred in the same staurosporine concentration range.  相似文献   

3.
The role of protein kinase C in insulin signal transduction i s controversial It has been postulated that protein kinase C i s activated by insulin and that the kinase i s directly involved in insulin-mediated metabolic processes. In opposition to this view i s the hypothesis that protein kinase C is not activated by insulin and, more importantly, may be responsible for attenuation of the insulin signal The evidence for and against protein kinase C as a mediator of the insulin signal will be put in perspective followed by discussion of the possible role of the kinase in the pathogenesis of insulin resistance in type II diabetes.  相似文献   

4.
Premature chromosome pulverization (PCC) or prophasing is a much misunderstood cytological entity. It must be separated from chromosome damage caused by a number of chemical, physical and biological agents. Prophasing is observed in fused cells in which one of the constituent cells must be in metaphase and another in interphase. The morphology of the "pulverized" interphase nucleus will depend on the phase of the cell cycle in which the interphase cell was in when exposed to a substance present in the cytoplasm of the metaphase cell leading to "prophasing". Prophasing is a normal cellular phenomenon occurring prematurely or under abnormal conditions (fusion of cells) and its demonstration in human cells or tumors may be indicative of the presence of a virus (or its products) which leads to cell fusion, but does not play a role in prophasing.  相似文献   

5.
6.
7.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

8.
A whole-cell patch recording was used to determine the effects of staurosporine (ST), a potent protein kinase C (PKC) inhibitor, on L-type Ca(2+) channel (LTCC) activity in rabbit atrial myocytes. Bath application of ST (300 nM) caused a significant reduction in peak I-V relationship of LTCC (from -16.8+/-2.55 to -3.74+/-1.22pApF(-1) at 0 mV). The level of L-type Ca(2+) current (I(Ca,L)) inhibition produced by ST was independent of the voltage at which the effect was measured. ST inhibited the I(Ca,L) in a dose-dependent manner with a K(d) value of 61.98+/-6.802 nM. ST shifted the activation curve to more positive potentials, but did not have any significant effect on the voltage dependence of the inactivation curve. Other PKC inhibitors, GF 109203X (1 microM) and chelerythrine (3 microM), and PKA inhibitor, PKA-IP (5 microM), did not show any inhibitory effect on I(Ca,L). Additional application of ST in the presence of isoproterenol (1 microM), a selective beta-adrenoreceptor agonist, reduced peak I(Ca,L) (78.2%) approximately to the same level with single application of ST (77.8%). In conclusion, our results indicate that ST directly blocks the LTCC in a PKC or PKA-independent manner on LTCC and it should be taken into consideration when ST is used in functional studies of ion channel modulation by protein phosphorylation.  相似文献   

9.
10.
The protein kinase inhibitor staurosporine was found to cause a dramatic increase in the free-running period (FRP) of circadian rhythms in the dinoflagellate Gonyaulax polyedra, and its effect was similar when added at different phases of the circadian cycle. Chronic exposure to staurosporine lengthened the FRP by as much as 7 h without significantly affecting the amplitude or waveform of the bioluminescence rhythm. The effect on the length of the FRP occurred only above a threshold concentration, and it lasted for a limited number of cycles that depended on the dose of the drug. The FRP lengthening was not evident until 23 to 26 h after staurosporine addition, even though the drug entered Gonyaulax cells in 1 h or less. When tested in combination with bright light pulses, staurosporine was found to enhance both light-induced phase advances and delays, indicating that the drug acts on circadian phototransduction. At concentrations that alter the FRP and the response to light pulses, staurosporine appears to act on a small number of protein kinases, attenuating the activity of two individual protein kinases without affecting overall phosphate incorporation into proteins in vitro.  相似文献   

11.
Nerve growth factor (NGF) cooperates with glucocorticoids, activators of adenylate cyclase, and lithium to induce the expression of teh gene encoding the neuropeptides neurotensin and neuromedin N (NT/N gene) in PC 12 pheochromocytoma cells. High level expression requires simultaneous treatment with three or all four inducers. To examine the mechanism underlying this complex synergism, we have examined the effects of protein kinase inhibitors and other agents which influence intracellular signal transduction on NT/N gene expression. Two structurally similar bacterial alkaloids, staurosporine and K-252a, inhibit several protein kinases in vitro, including protein kinase C and cyclic nucleotide-dependent kinases. K-252a has been reported to specifically inhibit the effects of NGF on PC12 pheochromocytoma cells. Surprisingly, staurosporine in combination with other inducers markedly potentiated NT/N gene expression. In contrast, K-252a had no effect on NT/N gene expression when added simultaneously with other inducers. Expression of the NT/N gene was also potentiated by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, which directly activates protein kinase C, and by bradykinin, which stimulates phosphatidylinositol turnover in PC12 cells, and these effects were not blocked by staurosporine. Staurosporine was generally more effective in stimulating NT/N gene expression when used in inducer combinations that did not include NGF. These results, taken together with recent evidence that staurosporine is also able to induce neurite outgrowth from PC12 cells, suggest that the effects of staurosporine and NGF may converge, in part, on a common intracellular target.  相似文献   

12.
To investigate a possible regulatory role of protein kinase C (PKC) on collagen-induced phospholipase activity, human platelets were prelabelled with either [3H] arachidonic acid or [14C]stearic acid and stimulated with collagen (2 micrograms/ml) in the presence or absence of the protein kinase inhibitor, staurosporine (1 microM). The collagen-induced release of [3H]arachidonic acid and formation of [14C]stearoyl-labelled lysophospholipids was inhibited by prior incubation with staurosporine, as was the formation of 3H-labelled thromboxane B2, thereby suggesting inhibition of the collagen-induced phospholipase A2 activity. The degradation of phosphatidylinositol (PI) and elevation of phosphatidic acid (PA) in platelets prelabelled with either radiotracer were also completely blocked by staurosporine pretreatment, indicating a suppression of collagen-stimulated phospholipase C activity. Suppressed phospholipase C activity may have been due to diminished thromboxane A2 formation since treatment with the dual cyclo-oxygenase/lipoxygenase inhibitor, BW755C, also resulted in an inhibition of the collagen-stimulated loss of 14C-labelled PI and rise in PA by 75-80%. Our results suggest that protein kinase, possible PKC, may be involved in the regulation of these phospholipases in collagen-stimulated human platelets.  相似文献   

13.
用蛋白激酶C的抑制剂Staurosporine(10nmol/L)处理HeLa细胞,明显抑制HeLa细胞的增殖。这种抑制作用不是由于引起细胞死亡,而是因为细胞被阻断在G2期。这种阻断作用伴随着HeLa细胞多倍体的形成,提示Staurosporine抑制了HeLa细胞蛋白激酶C活性后引起的细胞阻滞,对细胞核的周期运转没有影响。进一步的探讨发现这种抑制作用可能是通过干扰细胞骨架的正确分布形成的,表明蛋白激酶C对于HeLa细胞由G2到M期正确过渡起重要作用。  相似文献   

14.
Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous ineukaryotic cells,which transfer signals from the cell surface to the nucleus,controlling multiple cellularprograms.MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase(ERK) kinases (MEK)],which in turn are activated by MAPK kinase kinases (MAP3Ks).TAO2 is a MAP3Klevel kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs.Because p38 MAPKs arekey regulators of expression of inflammatory cytokines,they appear to be involved in human diseases suchas asthma and autoimmunity.As an upstream activator of p38s,TAO2 represents a potential drug target.Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine,a broad-range protein kinase inhibitor that inhibits TAO2 with an IC_(50) of 3 μM.The structure reveals that staurosporineoccupies the position where the adenosine of ATP binds in TAO2,and the binding of the inhibitor mimicsmany features of ATP binding.Both polar and nonpolar interactions contribute to the enzyme-inhibitorrecognition.Staurosporine induces conformational changes in TAO2 residues that surround the inhibitormolecule,but causes very limited global changes in the kinase.The structure provides atomic details forTAO2-staurosporine interactions,and explains the relatively low potency of staurosporine against TAO2.The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.  相似文献   

15.
Choline-O-acetyltransferase (ChAT) is the enzyme which catalyses the biosynthesis of the neurotransmitter acetylcholine in cholinergic neurons. Here we show that in mouse cholinergic NS-20Y neuroblastoma cells cultured in the presence of either okadaic acid (serine/threonine phosphatases 1 and 2A inhibitor) or KN-62 (CaM kinase inhibitor) ChAT activity and mRNA either increased or decreased as a function of the drug concentration, respectively. After 24 h exposure, okadaic acid exerted a dramatic effect on cell morphology; cells became round and had no more neurites. On the contrary, KN-62 induced a slight morphological differentiation of the cells.The present results suggest that phosphatases 1 and 2A and CaM kinase could mediate regulation of ChAT gene expression.  相似文献   

16.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that confers multidrug resistance. In addition to its ability to efflux toxins P-gp can also inhibit apoptosis induced by a wide array of cell death stimuli that rely on activation of intracellular caspases for full function. We have previously demonstrated that stimuli including drugs such as hexamethylene bisacetamide (HMBA), the cytotoxic lymphocyte granule protein granzyme B, and pore-forming proteins such as perforin, kill P-gp positive cells in a caspase-independent manner. We therefore hypothesised that drugs that are not effluxed by P-gp and which induce cell death in the absence of caspase activation could induce death of P-gp expressing cells. Staurosporine has been previously shown to kill cells in the absence of caspase activation. Consistent with our hypothesis, we demonstrate here that staurosporine can equivalently kill P-gp(+ve) and P-gp(-ve) tumor cell lines in a caspase-independent manner.  相似文献   

17.
In rabbit peritoneal neutrophils prelabeled with [3H] lyso platelet-activating factor, a protein kinase C inhibitor, staurosporine (> 1 microM), increased [3H]phosphatidylethanol ([3H]PEt) level in the presence of ethanol in a concentration- and time-dependent manner, providing evidence for staurosporine activation of phospholipase D (PLD). The staurosporine activation of the enzyme absolutely required both extracellular calcium and cytochalasin B, and was almost completely inhibited by pretreatment of the cells with pertussis toxin (IAP). In a reconstituted system where the purified Gi1 had been incorporated into phospholipid vesicles, staurosporine activated GTPase activity of Gi1 in a concentration-dependent fashion, with a maximal 4-5-fold effect. ADP-ribosylation by IAP of Gi1 in vesicles significantly suppressed the staurosporine activation. As with the GTPase activity of Gi1, GTPase activities of other purified IAP-sensitive G proteins, such as Gi2 and G(o), were significantly stimulated by staurosporine, but the cholera toxin substrate Gs was appreciably less sensitive to the staurosporine stimulation. The staurosporine activation of GTPase was also observed in rabbit neutrophil membranes from control cells, but not in membranes from IAP-treated neutrophils. From these results, we conclude that the staurosporine activation of PLD in rabbit neutrophils is attributed to the direct activation of an IAP-sensitive G protein in a similar manner to receptors occupied by agonists. By contrast, staurosporine failed to activate phosphoinositide-specific phospholipase C (PI-PLC) under the conditions in which it activated PLD, indicating that there exists a PLD activation pathway independent of PI-PLC. Furthermore, it was found that N-acetyl-beta-glucosaminidase release from the granules of intact neutrophils was evoked by staurosporine to almost the same extent as by fMLP (100 nM), but O2- generation was not affected. These results suggest a possibility that PLD pathway plays an important role in enzyme release, but is not sufficient for O2- generation, in rabbit peritoneal neutrophils.  相似文献   

18.
This study focuses on the characterization of protein phosphorylation in the gravitropic response in oat shoot pulvini through the use of inhibitors of this process, namely staurosporine, okadaic acid and sodium fluoride. These three inhibitors reduce gravitropic curvature and cause changes in the phosphorylation of 38- and 50-kDa soluble proteins which show different levels of phosphorylation between lower and upper halves of gravistimulated pulvini. A kinetic analysis of phosphorylation shows that the 38- and 50-kDa soluble proteins exhibit different levels of phosphorylation between lower and upper halves of graviresponsive pulvini at 5 min after initiation of gravistimulation of stems. In addition, the phosphorylation of 63- and 70-kDa proteins from a total membrane preparation increases in lower halves of the pulvini following gravistimulation. These phosphoproteins are not found in the plasma membrane fraction. Taken together, at least four kinds of phosphoproteins are gravi-related. Of these, the 38- and 50-kDa soluble phosphoproteins may be involved in the regulation of early stages of the gravitropic response.  相似文献   

19.
The Aurora family kinases contribute to accurate progression through several mitotic events. ZM447439 ("ZM"), the first Aurora family kinase inhibitor to be developed and characterized, was previously found to interfere with the mitotic spindle integrity checkpoint and chromosome segregation. Here, we have used extracts of Xenopus eggs, which normally proceed through the early embryonic cell cycles in the absence of functional checkpoints, to distinguish between ZM's effects on the basic cell cycle machinery and its effects on checkpoints. ZM clearly had no effect on either the kinetics or amplitude in the oscillations of activity of several key cell cycle regulators. It did, however, have striking effects on chromosome morphology. In the presence of ZM, chromosome condensation began on schedule but then failed to progress properly; instead, the chromosomes underwent premature decondensation during mid-mitosis. ZM strongly interfered with mitotic spindle assembly by inhibiting the formation of microtubules that are nucleated/stabilized by chromatin. By contrast, ZM had little effect on the assembly of microtubules by centrosomes at the spindle poles. Finally, under conditions where the spindle integrity checkpoint was experimentally induced, ZM blocked the establishment, but not the maintenance, of the checkpoint, at a point upstream of the checkpoint protein Mad2. These results show that Aurora kinase activity is required to ensure the maintenance of condensed chromosomes, the generation of chromosome-induced spindle microtubules, and activation of the spindle integrity checkpoint.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号