首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whether intrathymic-positive and -negative selection of conventional alpha beta T cells occur in anatomically distinct sites is a matter of debate. By using a system composed of two distinct immune receptors, the Y-Ae mAb and the 1H3.1 (V alpha 1/V beta 6) TCR, both directed against the 52--68 fragment of the I-E alpha-chain (E alpha 52--68) bound to I-A(b), we examined the occurrence of negative selection imposed in vivo by a self-peptide-self-MHC class II complex with differential tissue expression. 1H3.1 TCR-transgenic (Tg) mice were bred to mice having an I-E alpha transgene with expression directed to all MHC class II-positive cells, restricted to thymic epithelial cells, or restricted to B cells, dendritic cells, and medullary thymic epithelial cells. All 1H3.1 TCR/I-E alpha double-Tg mice revealed a severely diminished thymic cellularity. Their lymph node cells were depleted of V beta 6(+)CD4(+) cells and were unresponsive to E alpha 52--68 in vitro. The absolute number of CD4(+)CD8(+) thymocytes was drastically reduced in all combinations, indicating that negative selection caused by an endogenously expressed self-determinant can effectively occur in the thymic cortex in vivo. Moreover, both cortical epithelial cells and, interestingly, the few cortical dendritic cells were able to support negative selection of CD4(+)CD8(+) thymocytes, albeit with a distinct efficiency. Collectively, these observations support a model where, in addition to the avidity of the thymocyte/stromal cell interaction, in vivo negative selection of autoreactive TCR-Tg T cells is determined by accessibility to self-peptide-self-MHC complexes regardless of the anatomical site.  相似文献   

2.
We investigated a mechanism leading to activation of murine T cells by staphylococcal enterotoxin E (SEE). L cells transfected with I-Ab genes but not control L cells supported IL-2 production by SEE-induced C57BL/6 T lymphoblasts upon restimulation with SEE. mAb to I-Ab markedly inhibited the above response. Flow cytometric analyses showed that SEE-induced C57BL/6 T lymphoblasts are composed of both CD4+ T cells and CD8+ T cells, and that larger parts of them bore V beta 11 (40-75%). mAb to V beta 11 markedly inhibited the SEE-induced proliferative response and IL-2 production by T cells. Analysis of SEE-induced IL-2 production in spleen cells from various mouse strains showed that C57BL/6 and B10.A(4R) mice (I-E, not expressed; V beta 11+ T cells, normally generated) are highly responsive to SEE. In contrast, BALB/c, C3H/HeN, (C57BL/6 x BALB/c or C3H/HeN) F1 mice (I-E, normally expressed and V beta 11+ T cells, deleted), and SJL and C57L mice (V beta 11 genes, deleted) are weakly responsive to SEE. The results indicate that SEE activates mainly T cells bearing V beta 11 in physical association with MHC class II molecules expressed on AC. In addition, the results indicate that SEE activates both CD4+ T cells and CD8+ T cells.  相似文献   

3.
The use of mutant mice expressing a normal MHC class II molecule surface level but a severely restricted self-peptide diversity (H-2Malpha(-/-)) previously revealed that T cells carrying the Ealpha(52-68)-I-A(b) complex-specific 1H3.1 TCR rely on self-peptide(s) recognition for both their peripheral persistence in irradiated hosts and their intrathymic positive selection. Here, we identify Ealpha(52-68) structurally related self-peptide(s) as a major contributor to in vivo positive selection of 1H3.1 TCR-transgenic thymocytes in I-A(b+)/I-Ealpha(-) mice. This is demonstrated by the drastic and specific reduction of the TCR high thymocyte population in 1H3.1 TCR-transgenic (Tg) mice treated with the Ealpha(52-68)-I-A(b) complex-specific Y-Ae mAb. Self-peptide(s) recognition is also driving the maturation of T cells carrying a distinct MHC class II-restricted specificity (the Ealpha(6) alphass TCR), since positive selection was also deficient in Ealpha(6) TCR Tg H-2Malpha(-/-) thymi. Such a requirement for recognition of self-determinants was mirrored in the periphery; Ealpha(6) TCR Tg naive T cells showed an impaired persistence in both H-2Malpha(-/-) and I-A(b)ss(-/-) irradiated hosts, whereas they persisted and slowly cycled in wild-type recipients. This moderate self-peptide(s)-dependent proliferation was associated with a surface phenotype intermediate between those of naive and activated/memory T cells; CD44 expression was up-regulated, but surface expression of other markers such as CD62L remained unaltered. Collectively, these observations indicate that maturation and maintenance of naive MHC class II-restricted T cells are self-oriented processes.  相似文献   

4.
We investigated the mechanisms of murine T cell activation by streptococcal pyrogenic exotoxin type A (SPE A), focusing on the role of MHC class II molecules on accessory cells (AC) and V beta usage in alpha beta TCR of SPE A-reactive T cells in comparison with staphylococcal enterotoxin B-reactive T cells. L cells transfected with I-Ab genes functioned as effective AC for SPE A-induced responses by C57BL/6 T cells, proliferation, and IL-2 production, but control L cells were not effective AC. Anti-I-Ab mAb inhibited the SPE A-induced responses. Staphylococcal enterotoxin B-induced C57BL/6 T cell blasts were composed of cells bearing V beta 3, members of the V beta 8 family, and V beta 11. Most of the SPE A-induced T cell blasts (about 80%) bore V beta 8.2. mAb reactive to V beta 8.2 markedly inhibited SPE A-induced T cell responses. Apparently, SPE A activates mainly T cells bearing V beta 8.2 in physical association with MHC class II molecules expressed on AC. We also discuss the pathogenic activities of SPE A in relation to toxic shock syndrome.  相似文献   

5.
MHC class I and class II molecules transport foreign and self peptides to the cell surface and present them to T lymphocytes. Detection of these peptide:MHC complexes has thus far been limited to analysis of the response of a T cell. Previously, we showed that a mAb, Y-Ae, reacts with 10 to 15% of class II molecules on peripheral B lymphocytes and on cells in the thymus medulla but not thymus cortex in mice that express both I-Ab and I-Eb molecules. Elsewhere, we show that Y-Ae detects a self E alpha peptide bound to I-Ab molecules. Data presented here suggest that the antibody binds over the peptide binding groove of class II molecules, and, like a TCR, appears to recognize both the self peptide and polymorphic class II residues. In addition to B lymphocytes, the Y-Ae determinant is expressed at comparable levels on other APC, including macrophages and dendritic cells. Finally, the antibody does not react with invariant chain-associated class II complexes, thus providing direct evidence that invariant chain:class II complexes and peptide:class II complexes are mutually exclusive. These data provide further evidence that immunologic self is of limited complexity, and have important implications for T cell selection, self tolerance, and autoreactivity.  相似文献   

6.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

7.
C57BL/6 (H-2b) mice fail to express I-E molecules on the surface of their cells and thus are unable to respond to I-E-restricted antigens such as GL phi and cytochrome c. Previous experiments in our laboratory have involved developing a system for studying differentiation of bone marrow cells into mature macrophage to gain a better understanding of class II MHC gene expression and function. In this study, we have used this system to transfect the E alpha d gene (cosmid 17.2) into C57BL/6 bone marrow cells and subsequently observed I-E expression on bone marrow-derived macrophages (BMDM) after differentiation in vitro. By using a modified calcium phosphate protocol, we found that the optimal period for transfection of the bone marrow cells was after 2 days of culture in vitro. By using the anti-I-E monoclonal antibody (Ia.7) derived from hybridoma 14-4-4, we detected the I-E molecule on the surface of transfected macrophages by a radiobinding assay and immunoprecipitation. BMDM expressed the I-E product maximally at 5 days of differentiation, and expression then declined. Furthermore, we have found that the expression of the I-E molecule on transfected macrophage was dependent upon exposure to interferon-gamma. Expression of I-E molecules was also detected by the generation of an allogeneic response. Transfected BMDM were compared with (CB6)F1 BMDM for their ability to stimulate C57BL/6 T cells and they were found to be equally effective. By using these initial findings, we hope to further optimize the conditions for insertion and expression of class II MHC genes in bone marrow cells.  相似文献   

8.
Interactions between MHC class II genes and minor lymphocyte stimulating (Mls) associated products are responsible for clonally deleting self-reactive T cells in mice. Here we demonstrate the role of the intact I-A and I-E molecules as well as the individual A alpha and E alpha chains in the deletion of cells bearing the V beta 6 TCR. DBA/1 (H-2q, Mls-1a) mice were crossed with various inbred congenic, recombinant, and transgenic strains and the F1's were screened for V beta 6 expression. All I-E+ strains were fully permissive in deleting V beta 6+ T cells. I-E- strains expressing I-A b,f,s,k,p permitted only partial deletion, while I-Aq strains showed no deletion. Recombinant I-Aq and I-Af strains which expressed E kappa alpha chain in the absence of E beta chain showed a decrease in V beta 6+ T cells as compared to their H-2q and H-2f counterparts. Furthermore, transgenic mice expressing E kappa alpha Aq beta gene in an H-2q haplotype (E kappa alpha Aq beta?) gave similar results to that of the recombinants in deleting V beta 6 T-cells. The role of the 1-A molecule was also shown by the partial deletion of V beta 6+ T cells in H-2q mice expressing transgenic I-Ak molecules. These results demonstrate that the E alpha chain is important in the deletion of V beta 6 T-cells in Mls-1a mice. The role of A alpha chain is also implied by the permissiveness of E kappa alpha Aq beta but not Aq alpha Aq beta molecules in the deletion of V beta 6+ T cells.  相似文献   

9.
The epitopes recognized by pathogenic T cells in systemic autoimmune disease remain poorly defined. Certain MHC class II-bound self peptides from autoimmune MRL/lpr mice are not found in eluates from class II molecules of MHC-identical C3H mice. Eleven of 16 such peptides elicited lymph node cell and spleen cell T cell proliferation in both MRL/lpr (stimulation index = 2.03-5.01) and C3H mice (stimulation index = 2.03-3.75). IL-2 and IFN-gamma production were detected, but not IL-4. In contrast to what was seen after immunization, four self peptides induced spleen cell proliferation of T cells from naive MRL/lpr, but not from C3H and C57BL/6.H2(k), mice. These peptides were derived from RNA splicing factor SRp20, histone H2A, beta(2)-microglobulin, and MHC class II I-A(k)beta. The first three peptides were isolated from I-E(k) molecules and the last peptide was bound to I-A(k). T cell responses, evident as early as 1 mo of age, depended on MHC class II binding motifs and were inhibited by anti-MHC class II Abs. Thus, although immunization can evoke peripheral self-reactive T cells in normal mice, the presence in MRL/lpr mice of spontaneous T cells reactive to certain MHC-bound self peptides suggests that these T cells actively participate in systemic autoimmunity. Peptides eluted from self MHC class II molecules may yield important clues to T cell epitopes in systemic autoimmunity.  相似文献   

10.
Previous staining studies with TCR V alpha 11-specific mAbs showed that V alpha 11.1/11.2 (AV11S1 and S2) expression was selectively favored in the CD4+ peripheral T cell population. As this phenomenon was essentially independent of the MHC haplotype, it was suggested that AV11S1 and S2 TCRs exert a preference for recognition of class II MHC molecules. The V alpha segment of the TCR alpha-chain is suggested to have a primary role in shaping the T cell repertoire due to selection for class I or II molecules acting through the complementarity determining regions (CDR) 1 alpha and CDR2 alpha residues. We have analyzed the repertoire of V alpha 11 family members expressed in C57BL/6 mice and have identified a new member of this family; AV11S8. We show that, whereas AV11S1 and S2 are more frequent in CD4+ cells, AV11S3 and S8 are more frequent in CD8+ cells. The sequences in the CDR1 alpha and CDR2 alpha correlate with differential expression in CD4+ or CD8+ cells, a phenomenon that is also observed in BALB/c mice. With no apparent restriction in TCR J alpha usage or CDR3 alpha length in C57BL/6, these findings support the idea of V alpha-dependent T cell repertoire selection through preferential recognition of MHC class I or class II molecules.  相似文献   

11.
Using TCR V beta 5 transgenic mice as a model system, we demonstrate that the induction of peripheral tolerance can mold the TCR repertoire throughout adult life. In these mice, three distinct populations of peripheral T cells are affected by chronic selective events in the lymphoid periphery. First, CD4+V beta 5+ T cells are deleted in the lymphoid periphery by superantigens encoded by mouse mammary tumor viruses-8 and -9 in an MHC class II-dependent manner. Second, mature CD8+V beta 5+ T cells transit through a CD8lowV beta 5low deletional intermediate during tolerance induction by a process that depends upon neither mouse mammary tumor virus-encoded superantigens nor MHC class II expression. Third, a population of CD4-CD8-V beta 5+ T cells arises in the lymphoid periphery in an age-dependent manner. We analyzed the TCR V alpha repertoire of each of these cellular compartments in both V beta 5 transgenic and nontransgenic C57BL/6 mice as a function of age. This analysis revealed age-related changes in the expression of V alpha families among different cellular compartments, highlighting the dynamic state of the peripheral immune repertoire. Our work indicates that the chronic processes maintaining peripheral T cell tolerance can dramatically shape the available TCR repertoire.  相似文献   

12.
The peripheral TCR V beta repertoire is strongly influenced by the processes of negative selection (deletion) and positive selection in the thymus. In order to investigate whether such selection events influence the V alpha repertoire, we have produced an anti-V alpha 11 mAb. This antibody was made by immunization with a chimeric TCR:Ig protein containing V alpha 11 in place of the VH of an IgG2a, lambda Ig. This scheme optimizes the specificity of immunization and facilitates the screening procedure. The antibody recognizes a panel of V alpha 11-expressing T cell clones. Analysis of mouse strains indicates that the antibody recognizes V alpha 11 only in mice of the C57 background. The expression of the epitope on peripheral T cells is strongly biased to the CD4+ subset, suggesting positive selection of V alpha 11 on class II MHC molecules. In some strain comparisons, the percentage of V alpha 11-expressing T cells in the CD4+ subset was elevated in I-E+ relative to I-E- strains. These data suggest that V alpha 11 can differentially influence the selection of T cells into the CD4+/CD8+ subsets.  相似文献   

13.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

14.
We have determined the DNA sequence of the murine I-E beta b immune response gene of the major histocompatibility complex (MHC) of the C57BL/10 mouse and compared it with the sequence of allelic I-E and non-allelic I-A genes from the d and k haplotypes. The polymorphic exon sequences which encode the first extracellular globular domain of the E beta domain show approximately 8% nucleotide substitutions between the E beta b and E beta d alleles compared with only approximately 2% substitutions for the intron sequences. This suggests that an active mechanism such as micro gene conversion events drive the accumulation of these mutations in the polymorphic exons. The fact that several of the nucleotide changes are clustered supports this hypothesis. The E beta b and E beta k genes show approximately 2-fold fewer nucleotide substitutions than the E beta d/E beta b pair. The A beta bm12, a mutant I-A beta b gene from the C57BL/6 mouse, has been shown to result from three nucleotide changes clustered in a short region of the beta 1 domain, which suggests that a micro gene conversion event caused this mutation. We show here that the E beta b gene is identical to the non-allelic A beta bm12 DNA sequence in the mutated region and suggest, therefore, that the E beta b gene was the donor sequence for this intergenic transfer of genetic information. Diversity in class II MHC genes appears therefore to be generated, at least in part, by the same mechanism proposed for class I genes: intergenic transfer of short DNA regions between non-allelic genes.  相似文献   

15.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

16.
We have generated a chimeric protein molecule composed of the alpha- and beta-chains of the MHC class II I-E molecule fused to antibody V regions derived from anti-human CD4 mAb MT310. Expression vectors were constructed containing the functional, rearranged gene segments coding for the V region domains of the antibody H and L chains in place of the first domains of the complete structural genes of the I-E alpha- and beta-chains, respectively. Cells transfected with both hybrid genes expressed a stable protein product on the cell surface. The chimeric molecule exhibited the idiotype of the antibody MT310 as shown by binding to the anti-idiotypic mAb 20-46. A protein of the anticipated molecular mass was immunoprecipitated with anti-mouse IgG antiserum. Furthermore, human soluble CD4 did bind to the transfected cell line, demonstrating that the chimeric protein possessed the binding capacity of the original mAb. Thus, the hybrid molecule retained: 1) the properties of a MHC class II protein with regard to correct chain assembly and transport to the cell surface; as well as 2) the Ag binding capacity of the antibody genes used. The generation of hybrid MHC class II molecules with highly specific, non-MHC-restricted binding capacities will be useful for studying MHC class II-mediated effector functions such as selection of the T cell repertoire in thymus of transgenic mice.  相似文献   

17.
The allospecific T cell recognition of the I-Ek molecule was assessed by using eight A. TH anti-A. TL proliferative T cell clones, all of which expressed the Thy-1-2+, Lyt-1+, Lyt-2-, Ia-, and p94,180+ cell surface phenotype. The use of panels of stimulating cells from homozygous of F1 hybrid strains indicated each T cell clone exhibited specificity for distinct alloactivating determinants including: i) a private E beta k-controlled determinant expressed in cis- or trans-complementing E beta kE alpha strains; ii) an apparently nonpolymorphic E alpha determinant resembling the serologic specificity Ia.7, i.e., present in all strains carrying E alpha and E beta expressor alleles; and iii) a series of conformational I-E determinants, the expression of which required a precisely defined combinatorial association of E beta plus E alpha chains. Two clones were found to be reactivated by cis- but not trans-complementing E beta k E alpha k strains, and another recognized an allodeterminant shared by the I-Ab molecule. Various I-Ek-reactive monoclonal antibodies (mAb) directed to epitopes presumably expressed on either E alpha (epitope clusters I and II) or E beta (epitope cluster III) chains inhibited the proliferative responses of seven clones recognizing private E beta k or unique E beta E alpha conformational activating determinants. By contrast, the restimulation of the clone directed to a nonpolymorphic E alpha determinant was selectively blocked by anti-Ia.7 mAb defining epitopes on the E alpha chains but not by those directed to the E beta chain. On the basis of these data, it was concluded that the recognition sites of most anti-I-Ek proliferative T cells were expressed on the E beta chain or the E beta plus E alpha interaction products, and that a minority of such alloreactive T cells could be activated through recognition of the E alpha chain per se.  相似文献   

18.
Analysis of spontaneous hybridomas generated from nonobese diabetic (NOD) mice indicates that the natural autoantibody repertoire of NOD mice is highly active compared with C57BL/6 and BALB/c mice. This property of increased B cell activity is present early in life (4 wk) and persists in older mice of both sexes. Even when selected for binding to a prototypic beta cell Ag, such as insulin, NOD mAb have characteristics of natural autoantibodies that include low avidity and broad specificity for multiple Ags. Analyses of the variable region of Ig H chain (V(H)) and variable region kappa L chain genes expressed by six insulin binding mAb show that V gene segments are often germline encoded and are identical with those used by autoantibodies, especially anti-dsDNA, from systemic autoimmune disease in MRL, NZB/W, and motheaten mice. V(H) genes used by four mAb are derived from the large J558 family and two mAb use V(H)7183 and V(H)Q52 genes. The third complementarity-determining region of Ig H chain of these mAb have limited N segment diversity, and some mAb contain DNA segments indicative of gene replacement. Genetic abnormalities in the regulation of self-reactive B cells may be a feature that is shared between NOD and conventional systemic autoimmune disorders. In NOD, the large pool of self-reactive B cells may fuel autoimmune beta cell destruction by facilitating T-B cell interactions, as evidenced by the identification of one mAb that has undergone Ag-driven somatic hypermutation.  相似文献   

19.
Transgenic mice expressing a T cell receptor heterodimer specific for a fragment of pigeon cytochrome c plus an MHC class II molecule (I-Ek) have been made. We find that H-2k alpha beta transgenic mice have an overall increase in the number of T cells and express a 10-fold higher fraction of cytochrome c-reactive cells than H-2b mice. Surface staining of thymocytes indicates that in H-2b mice, T cell development is arrested at an intermediate stage of differentiation (CD4+8+, CD310). Analyses of mice carrying these T cell receptor genes and MHC class II I-E alpha constructs indicate that his developmental block can be reversed in H-2b mice by I-E expression on cortical epithelial cells of the thymus. These data suggest that a direct T cell receptor-MHC interaction occurs in the thymus in the absence of nominal antigen and results in the enhanced export of T cells, consistent with the concept of "positive selection".  相似文献   

20.
H-2b class I-restricted, TNP-specific CTL clones were obtained by limiting dilution cloning of either short term polyclonal CTL lines or spleen cells of TNP-immunized mice directly ex vivo. Sequence analyses of mRNA coding for TCR alpha- and beta-chains of 11 clones derived from CTL lines from individual C57BL/6 mice revealed that all of them expressed unique but clearly nonrandom receptor structures. Five alpha-chains (45%) employed V alpha 10 gene elements, and four of those (36%) were associated with J beta 2.6-expressing beta-chains. The alpha-chains from these four TCR, moreover, contained an acidic amino acid in position 93 of their N or J region-determined sequences. Clones isolated directly from spleen cells carried these types of receptors at lower frequency, 27% V alpha 10 and 19% J beta 2.6, indicating that bulk in vitro cultivation on Ag leads to selection for these particular receptors. However, even in TNP-specific CTL cloned directly ex vivo, V alpha 10 usage was increased about fivefold over that in Ag-independently activated T cells in H-2b mice (4 to 5%). The selection for V alpha 10/J beta 2.6-expressing cells was obtained repeatedly in other TNP-specific CTL lines from C57BL/6 mice but not in FITC-specific CTL from the same strain or in TNP-specific CTL lines from B10.BR (H-2k) or B10.D2 (H-2d) mice. We conclude from this (a) that the selection for V alpha 10/J beta 2.6+ T cells is driven by the complementarity of these receptors to a combination of TNP and MHC epitopes and (b) that predominant receptor structures reflect the existence of a surprisingly limited number of "T cell-relevant" hapten determinants on the surface of covalently TNP-modified cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号