首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The necessity to perform serum-free cultures to produce recombinant glycoproteins generally requires an adaptation procedure of the cell line to new environmental conditions, which may therefore induce quantitative and qualitative effects on the product, particularly on its glycosylation. In previous studies, desialylation of EPO produced by CHO cells was shown to be dependent on the presence of serum in the medium. In this paper, to discriminate between the effects of the adaptation procedure to serum-free medium and the effects of the absence of serum on EPO production and glycosylation, adapted and non-adapted CHO cells were grown in serum-free and serum-containing media. The main kinetics of CHO cells were determined over batch processes as well as the glycosylation patterns of produced EPO by HPCE-LIF. A reversible decrease in EPO production was observed when cells were adapted to SFX-CHOTM medium, as the same cells partially recovered their production capacity when cultivated in serum-containing medium or in the enriched SFMTM serum-free medium. More interestingly, EPO desialylation that was not observed in both serum-free media was restored if the serum-independent cells were recultured in presence of serum. In the same way, while the serum-independent cells did not release a sialidase activity in both serum-free media, a significant activity was recovered when serum was added. In fact, the cell adaptation process to serum-free conditions did not specifically affect the sialidase release and the cellular mechanism of protein desialylation, which appeared to be mainly related to the presence of serum for both adapted and non-adapted cells.  相似文献   

2.
Somatic mutations which impair complex-type N-linked oligosaccharide processing and chemical inhibitors of processing have been shown to reduce metastatic potential in several experimental tumor models. In this report, we demonstrate that glycosylation mutants of the metastatic MDAY-D2 tumor cell line with either truncated glycans lacking sialic acid and galactose or a mutant with less branched N-linked oligosaccharides grow more slowly in serum-free medium (SFM) than do MDAY-D2 cells. In medium containing fetal calf serum, growth rates of the cell lines were similar. A revertant of the former mutation showed a return to a more rapid growth rate in SFM. The N-linked processing inhibitor swainsonine also reduced cell growth rate in SFM but not in serum-containing medium. One of five randomly selected clones of the MDAY-D2 tumor cell line showed a slower growth rate in SFM and also showed decreased expression of branched N-linked oligosaccharides. These observations suggest that in MDAY-D2 cells, optimal factor-independent stimulation is dependent upon expression of branched complex-type N-linked oligosaccharides. The growth rate of MDAY-D2 cells in SFM was dependent on the initial seeding density of the cultures, and medium conditioned by the cells accelerated the growth of low-density cultures, suggesting that the cells respond to an autocrine factor. Culture supernatants conditioned by mutant and wild-type cells had similar levels of growth-stimulating activity. However, both mutants and swainsonine-treated cells were less responsive to this growth-stimulating activity. The growth rates of the MDAY-D2 tumor cell lines in vivo as subcutaneous tumors correlated with their relative growth rates in SFM in vitro. The results suggest that branched complex-type N-linked oligosaccharides commonly expressed in malignant cells are required for optimal autocrine-dependent growth in vitro and may be a significant factor in tumor progression in vivo.  相似文献   

3.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

4.
Recombinant human erythropoietin (EPO) was produced by a stable transfected CHO-K1 cell clone (EPO-81) grown in serum-free medium. Our previous work showed that there was a significant increase in the heterogeneity of the glycoforms of EPO and a reduction of the sialylation at 20 mM NH(4)Cl. In the work presented here, the effects of ammonia on EPO N-linked oligosaccharides were analyzed. EPO was purified from culture supernatants by immunoaffinity chromatography. The N-linked oligosaccharides were released enzymatically and analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE) and HPLC. The FACE N-linked oligosaccharide profile showed that the sialylated glycans contain one prominent band at a position corresponding to eight glucose units. The density of the major band was greatly diminished and the width was significantly increased in cultures containing added ammonia. The proportion of tetraantennary structures was reduced by 60%, while the tri- and biantennary structures were increased proportionally in the presence of ammonia. Glycan analysis by HPLC using a weak anion exchange column showed that the most significant characteristic effect of ammonia was a reduction of the proportion of glycans with four sialic acids from 46% in control cultures to 29% in ammonia-treated cultures. Analysis of the desialylated glycans by normal phase chromatography indicated a distribution of tetra-, tri-, and biantennary structures similar to that shown by FACE. The N-linked glycan sequence was determined by sequential exoglycosidase digestion followed by FACE. The results indicated a typical N-linked complex oligosaccharide structure. Glycans from ammonia-containing cultures showed the same sequence pattern. In conclusion, we showed that ammonia in the culture medium affected EPO glycosylation, which was observed as a reduction of the tetraantennary and tetrasialylated oligosaccharide structures. However, the presence of ammonia in the cultures did not change the oligosaccharide sequence.  相似文献   

5.
Labeling of released asparagine-linked (N-linked) oligosaccharides from glycoproteins is commonly performed to aid in the separation and detection of the oligosaccharide. Of the many available oligosaccharide labels, 2-amino benzamide (2-AB) is a popular choice for providing a fluorescent product. The derivatization conditions can potentially lead to oligosaccharide desialylation. This work evaluated the extent of sialic acid loss during 2-AB labeling of N-linked oligosaccharides released from bovine fetuin, polyclonal human serum immunoglobulin G (IgG), and human α1-acid glycoprotein (AGP) as well as of sialylated oligosaccharide reference standards and found that for more highly sialylated oligosaccharides the loss is greater than the <2% value commonly cited. Manufacturers of glycoprotein biotherapeutics need to produce products with a consistent state of sialylation and, therefore, require an accurate assessment of glycoprotein sialylation.  相似文献   

6.
Summary Conditions for arresting and stimulating the proliferation of the rainbow trout fibroblast cell line RTG-2 have been examined and the time course of events after stimulation determined. Quiescent populations were achieved in two ways. Cultures grown to confluency without a medium change for at least 7 d had fewer than 5% of the cells in S phase and few mitotic figures. Cultures deprived of serum, which could be done for up to 3 d without a loss in cell number, also achieved quiescence. After 3 d without serum, less than 1% of cells were in S phase and mitotic figures were infrequent. Addition to these cultures of fresh serum-containing medium brought about the synchronous entry of cells into S phase and mitosis. For cultures in which either the medium had been changed after 7 d without a change or serum-containing medium had been added after 3 d of serum deprivation, DNA synthesis increased after a lag period of 20 to 24 h, was pronounced between 30 and 45 h, and then declined. This was followed by a peak in the mitotic index. These protocols for arresting and subsequently stimulating RTG-2 proliferation should allow the G1-S transition to be studied in a representative of teleosts. This research was supported by Natural Sciences and Engineering Research Council of Canada grant to N. C. B.  相似文献   

7.
A rapid quantitative analysis of the sialylated N-linked oligosaccharides of recombinant erythropoietin (EPO) expressed in Chinese hamster ovary (CHO) cells has been developed. The procedure utilizes a glycoamidase (glycopeptidase F) to release all of the N-linked oligosaccharides from the native glycoprotein, followed by direct chromatographic analysis using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection. The eight sialyloligosaccharides isolated from HPAEC were characterized by derivatizing with 2-aminopyridine followed by two-dimensional HPLC mapping of the pyridylaminated asialooligosaccharides (Tomiya et al., 1988, Anal. Biochem. 171, 73-90). Seven kinds of complex-type asialooligosaccharides were identified ranging from a biantennary structure to N-acetyllactosamine-extended tetraantennary structure. Approximately 3% of the terminal galactose residues of the oligosaccharides released from EPO were not sialylated whereas 97% contained an alpha(2-->3)-linked sialic acid. Quantitative oligosaccharide mapping of four different lots of EPO from CHO cells was performed to quantify the molar balance and distribution of the N-linked oligosaccharides. The sialyloligosaccharides were distributed with approximately 5% disialylated (single type), 20% trisialylated (six types), and 75% tetrasialylated (four types) oligosaccharides with an average molar recovery of 85% starting from 750 pmol of EPO.  相似文献   

8.
Recent studies have shown that in the developing limb bud retinoic acid is a skeletal morphogen at physiological levels, but a potent teratogen at higher levels. Retinoic acid has also been shown to be teratogenic during facial development, but very low levels may have an as yet unspecified role in normal development. In the present study the effects of retinoic acid on chondrogenesis and myogenesis by craniofacial cells grown in micromass cell culture were investigated. Retinoic acid, at concentrations of 0.01-100 ng/ml, was supplied to cells derived from day-4 (H.H stage 23/24) chick embryo mandibular, maxillary and frontonasal processes, grown in micromass cultures for 4 days in both serum-containing and defined media. Based on Alcian-blue-staining, concentrations of retinoic acid of 0.1-1 ng/ml were found to enhance chondrogenesis by mandibular cells grown in defined medium, while greater concentrations up to 100 ng/ml inhibited chondrogenesis. By contrast, chondrogenesis was generally retarded by all concentrations of retinoic acid applied to frontonasal cells grown in defined medium and when applied to both mandibular and frontonasal cells when grown in serum-containing medium. Cells from stage-23/24 maxillae did not display any significant chondrogenic activity in either medium under these culture conditions. Unlike chondrogenesis, myogenesis in mandibular, frontonasal and maxillary cultures was greater in defined than serum-containing medium, based on the appearance of immunologically detectable muscle myosin, and was reduced considerably less in defined medium by all concentrations of retinoic acid tested. In the presence of serum however, myogenesis was retarded with increasing concentrations of retinoic acid beyond 1 ng/ml in micromass cultures from all three facial regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human heart galectin-1 (HHL) was separated by high pressure liquid chromatography from endogenous glycoproteins co-purified with it during affinity chromatography. These glycoproteins offered excellent ligands for HHL binding and were rich in T antigen (Galβ1 → 3 GalNAc-) of O-linked oligosaccharides. In enzyme linked lectin assay and hemagglutination inhibition assay, human IgA1, bovine fetuin and other O-glycosylated T antigen-bearing glycoproteins bound to the lectin efficiently in contrast to single N-acetyl lactosamine (LacNAc)-bearing N-linked oligosaccharides released from them and to IgG which is not O-glycosylated. HHL binding to IgA1 and fetuin was unaffected by removal of their N-linked oligosaccharides by -mannosidase. When immobilized, O-glycosylated serum proteins but not IgG could capture HHL from its solutions. Desialylated or polymeric IgA1 was better inhibitor than monomeric IgA1. The findings suggest a possible role for galectin-1 in anchoring of microbial and cancer cells known to be rich in T antigen, in high serum IgA1 turn over and in tissue sequestering of IgA1 immune complexes especially after their microbial desialylation in IgA nephropathy and other immune complex-mediated disorders.  相似文献   

10.
Kulakosky  PC; Hughes  PR; Wood  HA 《Glycobiology》1998,8(7):741-745
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8- aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging. The oligosaccharide structures were confirmed with exoglycosidase digestions. Recombinant SEAP produced in cell lines of Lymantria dispar (IPLB-LdEIta), Heliothis virescens (IPLB-HvT1), and Bombyx mori (BmN) and larvae of Spodoptera frugiperda, Trichoplusia ni , H.virescens , B.mori , and Danaus plexippus contained oligosaccharides that were structurally identical to the 10 oligosaccharides attached to SEAP produced in T.ni cell lines. The oligosaccharide structures were all mannose-terminated. Structures containing two or three mannose residues, with and without core fucosylation, constituted more than 75% of the oligosaccharides from the cell culture and larval samples.   相似文献   

11.
Expression of β1,6-branched N-linked oligosaccharides have a definite association with invasion and metastasis of cancer cells. However, the mechanism by which these oligosaccharides regulate these processes is not well understood. Invasive variants of B16 murine melanoma, B16F10 (parent) and B16BL6 (highly invasive variant) cell lines have been used for these studies. We demonstrate that substitution of α2,6-linked sialic acids on multiantennary structures formed as a result of β1,6-branching modulate cellular adhesion on both extracellular matrix (ECM) and basement membrane (BM) components. Removal of α2,6 sialic acids either by enzymatic desialylation or by stably down-regulating the ST6Gal-I (enzyme that catalyses the addition of α2,6-linked sialic acids on N-linked oligosaccharides) by lentiviral driven shRNA decreased the adhesion on both ECM and BM components and invasion through reconstituted BM matrigel.  相似文献   

12.
The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35SO4 in medium fraction dAl eluted as a retarded peak (Kav 0.28) on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Culture medium fraction dAlDl from serum-free culture medium aggregated poorly when incubated with human hyaluronic acid (HA) in the presence of bovine link protein or when dialysed against bovine nasal cartilage proteoglycan aggregate. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types.  相似文献   

13.
Summary The capacity of two Trichoplusia ni (TN-368 and BTI-Tn-5bl-4) and a Spodoptera frugiperda (IPLB-SF-21A) cell lines to glycosylate recombinant, baculovirus-encoded, secreted, placental alkaline phosphatase was compared. The alkaline phosphatase from serum-containing, cell culture medium was purified by phosphate affinity column chromatography. The N-linked oligosaccharides were released from the purified protein with PNGase F and analyzed by fluorophore-assisted carbohydrate electrophoresis. The majority of oligosaccharide structures produced by the three cell lines contained two or three mannose residues, with and without core fucosylation, but there were structures containing up to seven mannose residues. The oligosaccharides that were qualitatively or quantitatively different between the cell lines were sequenced with glycosidase digestions. The S. frugiperda cells produced more fucosylated oligosaccharides than either of the T. ni cell lines. The smallest oligosaccharide produced by S. frugiperda cells was branched trimannose. In contrast, both T. ni cell lines produced predominantly dimannose and linear trimannose structures devoid of α 1–3-linked mannose.  相似文献   

14.
A stably differentiated clonal derivative (Cl.16E) of the human colonic adenocarcinoma cell line HT29 secretes in culture high-Mr glycoproteins that were purified from the serum-free conditioned medium by preparative SDS/polyacrylamide-gel electrophoresis. Analysis of the oligosaccharides released from the [3H]glucosamine-labelled high-Mr glycoproteins by alkaline-borohydride treatment showed that this material consisted of O-linked oligosaccharides (without any detectable N-linked oligosaccharides) that were eluted as three fractions from Bio-Gel P-6 columns. The main oligosaccharide fraction obtained after such treatment and desialylation was eluted together with a six-unit glucose polymer from a Bio-Gel P-4 column. Polyclonal antibodies were raised against the high-Mr glycoproteins, and in immunoblot analysis they reacted specifically with the high-Mr glycoproteins present in the conditioned medium. Furthermore, immunohistochemical staining of sections in paraffin wax revealed that these antibodies labelled normal human gastrointestinal mucins. We conclude that (1) the high-Mr glycoproteins prepared by SDS/polyacrylamide-gel electrophoresis are pure mucus glycoproteins on the basis of sensitivity to alkaline-borohydride treatment, monosaccharide composition and immunochemical and immunohistological findings, and (2) these mucins have antigenic determinants in common with the normal human gastrointestinal mucins.  相似文献   

15.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

16.
Retinoic acid (RA) inhibits the growth of mouse S91-C2 melanoma cells and enhances the glycosylation of a cell surface sialoglycoprotein (gp160). The present study analyzed the binding of 125I-labeled lectins to gp160 within polyacrylamide slab gels after electrophoretic separation of cellular macromolecules. Wheat germ agglutinin (WGA) and concanavalin A (Con A) bound to gp160 of RA-treated cells (RA-gp160) more extensively than to gp160 of control cells (C-gp160). Lens culinaris hemagglutinin (LCH), pokeweed mitogen (PWM), Ricinus communis agglutinin I (RCAI), and peanut agglutinin (PNA) failed to bind to either C-gp160 or to RA-gp160. The binding of WGA was greatly diminished after sialic acid removal. In contrast, desialylation made possible the binding of RCAI to RA-gp160. LCH, PWM and PNA did not bind to gp160 even after desialylation. Smith degradation exposed WGA-binding sites on RA-gp 160. These results suggest that gp 160 contains one or more highly branched, sialylated, N-linked complex-type side chains and lacks O-linked oligosaccharides and poly N-acetyllactosamine side chains.  相似文献   

17.
High-performance liquid chromatography with electrospray ionization mass spectrometry (LC/MS) and liquid chromatography with tandem mass spectrometry (LC/MS/MS) were applied to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin (EPO) used as a model of the sialylated glycoprotein. N-linked oligosaccharides were released from recombinant human EPO expressed in Chinese hamster ovary cells enzymatically and reduced with NaBH(4). Many different sialylated oligosaccharides of EPO were separated and characterized by LC/MS equipped with a graphitized carbon column (GCC). Glycosylation sites and the preliminary glycosylation pattern at each glycosylation site were determined by LC/MS of endoproteinase Glu-C-digested EPO. The detailed site-specific carbohydrate heterogeneity caused by the differences in the molecular weight, branch, linkage, and sequence was elucidated by GCC-LC/MS of the N-linked oligosaccharides released from the isolated glycopeptides. Structural details of the isomers were analyzed by LC/MS/MS, and it was indicated that di- and trisialylated tetraantennary oligosaccharides are attached to Asn24, 38, and 83, whereas their isomers, di- and trisialylated triantennary oligosaccharides containing N-acetyllactosamines, are combined with Asn24. Our method is useful for the determination of glycosylation sites, the site-specific carbohydrate heterogeneity of glycoproteins, and the carbohydrate structure.  相似文献   

18.
Recombinant human erythropoietin (EPO) is a glycoprotein produced as a therapeutic agent from mammalian cell cultures for the treatment of anemia associated with severe kidney damage. The EPO structure has a high glycan content which is essential for bioactivity but shows considerable molecular heterogeneity. The cell culture conditions that affect the heterogeneity of the glycoforms of EPO are not well understood. However, the accumulation of ammonia in culture is one factor that has been associated with an enhanced heterogeneity of glycoforms. In this report we investigate the metabolic perturbations associated with ammonia and glucosamine that may give rise to an altered pattern of EPO glycosylation. Recombinant human erythropoietin was synthesized in serum-free cultures of transfected Chinese hamster ovary (CHO) cells. The molecular heterogeneity of erythropoietin was increased by supplementation of cultures with either ammonia or glucosamine. The enhanced molecular heterogeneity was shown to be due to variable glycosylation that resulted in EPO with an enhanced molecular weight and isoelectric point range. Enzymatic removal of the glycan moiety of EPO in all cases resulted in a single molecular form with a molecular weight of 18 000, which corresponded to non-glycosylated EPO. The variable glycosylation was consistent with reduced sialylation and antennarity of the carbohydrate structures present on the three N-linked sites of EPO. In the presence of ammonia (>30 mM) the proportion of tetrasialylated and tetraantennary glycan structures were reduced by 73% and 57%, respectively, as determined by HPLC analysis. Such changes were also observed, although to a lesser extent (41% and 37%), by an increase in the glucosamine concentration (>10 mM) in the medium. The enhanced heterogeneity of the glycan structures coincided with a significant increase in the intracellular UDP-N-acetylhexosamine (UDP-GNAc) pool. The measured UDP-GNAc level was up to 2 orders of magnitude higher in the presence of either glucosamine or ammonia. However, the changes in the glycosylation profiles induced by either glucosamine or ammonia were significantly different even at the same intracellular UDP-GNAc concentration. This suggests that the enhanced EPO heterogeneity could not be mediated solely by the increased UDP-GNAc level. Glucosamine (but not ammonia) was shown to cause significant inhibition of glucose transport into the cells, which could induce a different pattern of primary metabolism.  相似文献   

19.
Targeting of lysosomal acid phosphatase with altered carbohydrate   总被引:3,自引:0,他引:3  
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes, where it is converted into a soluble protein by a limited proteolysis (Waheed et al., 1988, EMBO J. 7, 2351-2358). Transport of human lysosomal acid phosphatase in heterologous BHK-21 cells was examined under conditions that impair mannose-6-phosphate receptor-dependent transport, N-glycosylation or processing of N-linked oligosaccharides. Targeting of lysosomal acid phosphatase to lysosomes was neither affected by antibodies blocking the mannose-6-phosphate/IGF II receptor, nor by NH4Cl, which inhibited the mannose-6-phosphate receptor-dependent targeting of soluble lysosomal enzymes. 1-Deoxynojirimycin, 1-deoxymannojirimycin and swainsonine inhibited processing of N-linked oligosaccharides in lysosomal acid phosphatase without significantly affecting its transport. Tunicamycin inhibited N-glycosylation of lysosomal acid phosphatase. The non-glycosylated lysosomal acid phosphatase polypeptides accumulated within light membranes and were not transported to dense lysosomes. These results indicate that transport of lysosomal acid phosphatase is independent of mannose-6-phosphate receptors, does not involve an acid pH-dependent step and does not require processing of N-linked oligosaccharides. N-glycosylation appears to be necessary to achieve a transport competent form of lysosomal acid phosphatase.  相似文献   

20.
Ten erythropoietin (EPO) fractions differing in sialic acid content, ranging from 9.5 to 13.8 mol mol–1 of EPO, were obtained from baby hamster kidney cell-derived recombinant human EPO by Mono Q column chromatography. The mean pI values of the EPO fractions determined by IEF-gel electrophoresis systematically shifted from 4.11 to 3.31, coinciding with the sialic acid content, without a change in the constitution of asialo N-linked oligosaccharides of each fraction. Although a linear relationship between thein vivo bioactivity and the sialic acid content of the fractionated, samples was observed until 12.1 mol mol–1 of EPO, there was no further increase in their activity over 12.4 mol mol–1 of EPO. On the other hand, an inverse relationship between thein vitro bioactivity and sialic acid content of EPO was observed. Also, we showed that thein vivo bioactivity of some fractions with low sialic acid contents was increased after treatment with 2,6-sialyltransferase, but thein vivo bioactivity of the other fractions with high sialic acid contents was either decreased or not affected.Abbreviations EPO erythropoietin - rHuEPO recombinant human erythropoietin - hCG human chorionic gonadotropin - BHK baby hamster kidney - CHO Chinese hamster ovary - NeuAc N-acetyl neuraminic acid - Gal galactose - HRCs hemolyser-resistant cells - WST-1 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium Na - IEF isoelectric focusing - pI isoelectric point  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号