首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The XMAP215/Dis1 MAP family is thought to regulate microtubule plus-end assembly in part by antagonizing the catastrophe-promoting function of kin I kinesins, yet XMAP215/Dis1 proteins localize to centrosomes. We probed the mitotic function of TOGp (human homolog of XMAP215/Dis1) using siRNA. Cells lacking TOGp assembled multipolar spindles, confirming results of Gergely et al. (2003. Genes Dev. 17, 336-341). Eg5 motor activity was necessary to maintain the multipolar morphology. Depletion of TOGp decreased microtubule length and density in the spindle by approximately 20%. Depletion of MCAK, a kin I kinesin, increased MT lengths and density by approximately 20%, but did not disrupt spindle morphology. Mitotic cells lacking both TOGp and MCAK formed bipolar and monopolar spindles, indicating that TOGp and MCAK contribute to spindle bipolarity, without major effects on MT stability. TOGp localized to centrosomes in the absence of MTs and depletion of TOGp resulted in centrosome fragmentation. TOGp depletion also disrupted MT minus-end focus at the spindle poles, detected by localizations of NuMA and the p150 component of dynactin. The major functions of TOGp during mitosis are to focus MT minus ends at spindle poles, maintain centrosome integrity, and contribute to spindle bipolarity.  相似文献   

2.
The Dis1/XMAP215 family of microtubule-associated proteins conserved from yeast to mammals is essential for cell division. XMAP215, the Xenopus member of this family, has been shown to stabilize microtubules in vitro, but other members of this family have not been biochemically characterized. Here we investigate the properties of the Saccharomyces cerevisiae homologue Stu2p in vitro. Surprisingly, Stu2p is a microtubule destabilizer that binds preferentially to microtubule plus ends. Quantitative analysis of microtubule dynamics suggests that Stu2p induces microtubule catastrophes by sterically interfering with tubulin addition to microtubule ends. These results reveal both a new biochemical activity for a Dis1/XMAP215 family member and a novel mechanism for microtubule destabilization.  相似文献   

3.
XMAP215 is a processive microtubule polymerase   总被引:6,自引:0,他引:6  
Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking." These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.  相似文献   

4.
Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat-containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.  相似文献   

5.
We have isolated a protein factor from Xenopus eggs that promotes microtubule assembly in vitro. Assembly promotion was associated with a 215-kD protein after a 1,000-3,000-fold enrichment of activity. The 215-kD protein, termed Xenopus microtubule assembly protein (XMAP), binds to microtubules with a stoichiometry of 0.06 mol/mol tubulin dimer. XMAP is immunologically distinct from the Xenopus homologues to mammalian brain microtubule-associated proteins; however, protein species immunologically related to XMAP with different molecular masses are found in Xenopus neuronal tissues and testis. XMAP is unusual in that it specifically promotes microtubule assembly at the plus-end. At a molar ratio of 0.01 mol XMAP/mol tubulin the assembly rate of the microtubule plus-end is accelerated 8-fold while the assembly rate of the minus-end is increased only 1.8-fold. Under these conditions XMAP promotes a 10-fold increase in the on-rate constant (from 1.4 s-1.microM-1 for microtubules assembled from pure tubulin to 15 s-1.microM-1), and a 10-fold decrease in off-rate constant (from 340 to 34 s-1). Given its stoichiometry in vivo, XMAP must be the major microtubule assembly factor in the Xenopus egg. XMAP is phosphorylated during M-phase of both meiotic and mitotic cycles, suggesting that its activity may be regulated during the cell cycle.  相似文献   

6.
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.  相似文献   

7.
XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer-bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.  相似文献   

8.
The microtubule-associated protein TOGp, which belongs to a widely distributed protein family from yeasts to humans, is highly expressed in human tumors and brain tissue. From purified components we have determined the effect of TOGp on thermally induced tubulin association in vitro in the presence of 1 mm GTP and 3.4 m glycerol. Physicochemical parameters describing the mechanism of tubulin polymerization were deduced from the kinetic curves by application of the classical theoretical models of tubulin assembly. We have calculated from the polymerization time curves a range of parameters characteristic of nucleation, elongation, or steady state phase. In addition, the tubulin subunits turnover at microtubule ends was deduced from tubulin GTPase activity. For comparison, parallel experiments were conducted with colchicine and taxol, two drugs active on microtubules and with tau, a structural microtubule-associated protein from brain tissue. TOGp, which decreases the nucleus size and the tenth time of the reaction (the time required to produce 10% of the final amount of polymer), shortens the nucleation phase of microtubule assembly. In addition, TOGp favors microtubule formation by increasing the apparent first order rate constant of elongation. Moreover, TOGp increases the total amount of polymer by decreasing the tubulin critical concentration and by inhibiting depolymerization during the steady state of the reaction.  相似文献   

9.
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.  相似文献   

10.
Microtubule self-assembly is largely governed by the chemical kinetics and thermodynamics of tubulin-tubulin interactions. An important aspect of microtubule assembly is that hydrolysis of the beta-tubulin-associated GTP promotes protofilament curling. Protofilament curling presumably drives the transition from tip structures associated with growth (sheetlike projections and blunt ends) to those associated with shortening (rams' horns and frayed ends), and transitions between these structures have been proposed to be important for growth-shortening transitions. However, previous models for microtubule dynamic instability have not considered such structures or mechanics explicitly. Here we present a three-dimensional model that explicitly incorporates mechanical stress and strain within the microtubule lattice. First, we found that the model recapitulates three-dimensional tip structures and rates of assembly and disassembly for microtubules grown under standard conditions, and we propose that taxol may stabilize microtubule growth by reducing flexural rigidity. Second, in contrast to recent suggestions, it was determined that sheetlike tips are more likely to undergo catastrophe than blunt tips. Third, partial uncapping of the tubulin-GTP cap provides a possible mechanism for microtubule pause events. Finally, simulations of the binding and structural effects of XMAP215 produced the experimentally observed growth and shortening rates, and tip structure.  相似文献   

11.
The way that microtubules reorganize from their long, stable interphase configuration to form the mitotic spindle remains a challenging and unsolved question. It is now widely recognized that microtubule polymerization during the cell cycle is regulated by a balance between microtubule-stabilizing and-destabilizing factors. Stabilizing factors include a large group of microtubule-associated proteins (MAPs; e.g. MAP4, XMAP215, XMAP230/XMAP4 and XMAP310) and the destabilizing factors are a growing family of proteins (e.g. Stathmin/Op18 and XKCM1). Recent studies have allowed a mechanistic dissection of how these stabilizing and destabilizing factors regulate microtubule dynamics and spindle assembly.  相似文献   

12.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

13.
Bundles of microtubules and cross-bridges between microtubules in the bundles have been observed in phragmoplasts, but proteins responsible for forming the cross-bridges have not been identified. We isolated TMBP200, a novel microtubule bundling polypeptide with an estimated relative molecular mass of about 200,000 from telophase tobacco BY-2 cells. Ultrastructural observation of microtubules bundled by purified TMBP200 in vitro revealed that TMBP200 forms cross-bridges between microtubules. The structure of the bundles and lengths of the cross-bridges were quite similar to those observed in phragmoplasts, suggesting that TMBP200 participates in the formation of microtubule bundles in phragmoplasts. The cDNA encoding TMBP200 was cloned and the deduced amino acid sequence showed homology to a class of microtubule-associated proteins including Xenopus XMAP215, human TOGp and Arabidopsis MOR1.  相似文献   

14.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2–cyclinB1 complex). It has previously been demonstrated that the p34cdc2–cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215–cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

15.
Slep KC  Vale RD 《Molecular cell》2007,27(6):976-991
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin binding domains of XMAP215 (yeast Stu2p and Drosophila Msps), EB1 (yeast Bim1p and human EB1), and CLIP-170 (human), which reveal diverse tubulin binding interfaces. Functional studies, however, reveal a common property that native or artificial dimerization of tubulin binding domains (including chemically induced heterodimers of EB1 and CLIP-170) induces tubulin nucleation/assembly in vitro and, in most cases, plus end tracking in living cells. We propose that +TIPs, although diverse in structure, share a common property of multimerizing tubulin, thus acting as polymerization chaperones that aid in subunit addition to the microtubule plus end.  相似文献   

16.
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.  相似文献   

17.
Asbury CL 《Cell》2008,132(1):19-20
XMAP215 is a microtubule plus-end binding protein implicated in modulating microtubule dynamics. In this issue, Brouhard et al. (2008) propose a new mechanism to explain how XMAP215 promotes microtubule growth. They report that XMAP215 moves with the growing microtubule plus ends where it catalyzes the addition of tubulin subunits.  相似文献   

18.
Microtubules are essential structures that organize the cytoplasm and form the mitotic spindle. Their number and orientation depend on the rate of nucleation events and their dynamics. Microtubules are often, but not always, nucleated off a single cytoplasmic element, the centrosome. One microtubule-associated protein, XMAP215, is also a resident centrosomal protein. In this study, we have found that XMAP215 is a key component for the microtubule-nucleating activity of centrosomes. We show that depletion of XMAP215 from Xenopus egg extracts impairs their ability to reconstitute the microtubule nucleation potential of salt-stripped centrosomes. We also show that XMAP215 immobilized on polymer beads induces the formation of microtubule asters in egg extracts as well as in solutions of pure tubulin. Formation of asters by XMAP215 beads indicates that this protein is able to anchor nascent microtubules via their minus ends. The aster-forming activity of XMAP215 does not require gamma-tubulin in pure tubulin solutions, but it is gamma-tubulin-dependent in egg extracts. Our results indicate that XMAP215, a resident centrosomal protein, contributes to the microtubule-nucleating activity of centrosomes, suggesting that, in vivo, the formation of asters by centrosomes requires factors additional to gamma-tubulin.  相似文献   

19.
Some basic proteins enable microtubule protein to form special assembly products in vitro, known as double-walled microtubules. Using histones (H1, core histones) as well as the human encephalitogenic protein to induce the formation of double-walled microtubules, we made the following electron microscopic observations: (1) Double-walled microtubules consist of an "inner" microtubule which is covered by electron-dense material, apparently formed from the basic protein, and by a second tubulin wall. (2) The tubulin of the second wall seems to be arranged as protofilaments, surrounding the inner microtubule in a helical or ring-like manner. (3) The surface of double-walled microtubules lacks the projections of microtubule-associated proteins, usually found on microtubules. (4) In the case of protofilament ribbons (incomplete microtubules), H1 binds exclusively to their convex sides that correspond to the surface of microtubules. Zn2+-induced tubulin sheets, consisting in contrast to microtubules of alternately arranged protofilaments, are covered by H1 on both surfaces. Furthermore, multilayered sheet aggregates appeared. The results indicate that the basic proteins used interact only with that protofilament side which represents the microtubule surface. In accordance with this general principle, models on the structure of double-walled microtubules and multilayered tubulin sheets were derived.  相似文献   

20.
Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号