共查询到20条相似文献,搜索用时 15 毫秒
1.
《朊病毒》2013,7(4):334-338
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology. 相似文献
2.
Paul Schellenbaum Marylin Vantard Anne-Marie Lambert 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,76(3):359-364
Summary— Microtubule-associated proteins (MAPs) are one of the factors which regulate the different properties of microtubules during cell cycle and differentiation. They have been characterized as proteins which promote tubulin assembly in a concentration-dependent manner and bind to the outer surface of the polymers in vitro. Most of our knowledge comes from studies of neural microtubule-associated proteins and recent results highlight their implication in neuronal morphogenesis. In contrast, until recently, few data are available about the proteins that associate with plant tubulins. This is due principally to the fact that plant microtubule-associated proteins cannot be purified by the standard procedures used for neural microtubule-associated proteins. First, we will describe methods which have been used to isolate these proteins in plant cells. We will then discuss the biochemical and immunological properties of the plant microtubule-associated proteins which have been isolated. From these results, putative functions can be proposed for these proteins n the particular plant cytoskeleton activities. 相似文献
3.
4.
Summary Microtubule-associated proteins (MAPS) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution.The addition of estramustine phosphate to microtubules reconstituted of MAPS prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4° C was dependent on intact bindings between the tubulin and MAPs.Abbreviations Pipes
1,4-Piperazinediethanesulfonic acid
- EDTA
Ethylenedinitrilo Tetraacetic Acid
- MAPs
Microtubule-Associated Proteins
- SDS-PAGE
SDS-Polyacrylamide Gel Electrophoresis 相似文献
5.
Influence of microtubule-associated proteins on the differential effects of paclitaxel and docetaxel 总被引:1,自引:0,他引:1
Yves Fromes P. Gounon R. Veitia M. C. Bissery A. Fellous 《Journal of Protein Chemistry》1996,15(4):377-388
Microtubules are complex structures arising in part from the polymerization of tubulin dimers. Tubulin binds to a wide range of drugs which have been used as probes for tubulin conformation and assembly properties. There is some evidence that taxol and taxotere have differing effects on tubulin conformation. Previous work has shown that MAP2 and Tau, although they both induce microtubule assembly, have qualitatively different effects on tubulin's behavior. Since most microtubulesin vivo are likely to be associated with MAPs, we decided to characterize the differential effects of MAP2, Tau, taxol, and taxotere on tubulin polymerization with the aim of understanding the mechanisms through which these agents stimulate microtubule assembly. Furthermore, the inhibitive effect of calcium has been used to elucidate the ability of the two drugs to force tubulin assembly. These observations suggest that docetaxel, in addition to its greater efficiency in tubulin assembly, may have the capacity to differently alter certain classes of microtubules. Tau and MAP2 accessory proteins may represent important cofactors modulating the effects of taxoids. 相似文献
6.
Alterations of the axonal transport and microtubule network are potential causes of motor neurodegeneration in mice expressing a mutant form of the superoxide dismutase 1 (SOD1G37R) linked to amyotrophic lateral sclerosis (ALS). In the present study, we investigated the biology of microtubule-associated proteins (MAPs), responsible for the formation and stabilization of microtubules, in SOD1G37R mice. Our results show that the protein levels of MAP2, MAP1A, tau 100 kDa and tau 68 kDa species decrease significantly as early as 5 months before onset of symptoms in the spinal cord of SOD1G37R mice, whereas decrease in levels of tau 52-55 kDa species is most often noted with the manifestation of the clinical symptoms. Interestingly, there was no change in the protein levels of MAPs in the brain of SOD1G37R mice, a CNS organ spared by the mutant SOD1 toxicity. Remarkably, as early as 5 months before disease onset, the binding affinities of MAP1A, MAP2 and tau isoforms to the cytoskeleton decreased in spinal cord of SOD1G37R mice. This change correlated with a hyperphosphorylation of the soluble tau 52-55 kDa species at epitopes recognized by the antibodies AT8 and PHF-1. Finally, a shift in the distribution of MAP2 from the cytosol to the membrane is detected in SOD1G37R mice at the same stage. Thus, alterations in the integrity of microtubules are early events of the neurodegenerative processes in SOD1G37R mice. 相似文献
7.
The antitumor drug vinblastine has been a useful probe for examining the interaction of tubulin with the microtubule-associated proteins (MAPs), specifically with and MAP 2. Although and MAP 2 can stimulate microtubule assemblyin vitro, their specific interactions with tubulin are known to differ. For example, in the presence of vinblastine, both and MAP 2 cause tubulin to form spirals, but causes formation of clustered spirals of high turbidity, while MAP 2 causes formation of loose spirals of low turbidity [Ludueñaet al., J. Biol. Chem.
259, 12890–12898 (1984)]. Although cold temperatures can inhibit microtubule assembly, cold has no effect on vinblastine-induced tubulin spiral formation. Consequently, we used the vinblastine-tubulin system to examine the interactions of and MAP 2 with tubulin at low temperatures. We found that -tubulin-vinblastine complexes form about as well at 0°C as at 37°C. In contrast, MAP 2-tubulin-vinblastine complexes form much less well at 0°C than at 37°C. We find, however, that MAP 2, at 0°C, will strongly inhibit, and even reverse, formation of the -tubulin-vinblastine complex. This suggests that the temperature-sensitive factor is the MAP 2-stimulated tubulin-tubulin interaction rather than the MAP 2-tubulin interactionper se; this raises the possibility that the tubulin-tubulin interactions stimulated by differ in their temperature sensitivity from those stimulated by MAP 2. 相似文献
8.
Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells 总被引:14,自引:0,他引:14
下载免费PDF全文

Adenomatous polyposis coli (APC) tumor suppressor protein has been shown to be localized near the distal ends of microtubules (MTs) at the edges of migrating cells. We expressed green fluorescent protein (GFP)-fusion proteins with full-length and deletion mutants of Xenopus APC in Xenopus epithelial cells, and observed their dynamic behavior in live cells. During cell spreading and wound healing, GFP-tagged full-length APC was concentrated as granules at the tip regions of cellular extensions. At higher magnification, APC appeared to move along MTs and concentrate as granules at the growing plus ends. When MTs began to shorten, the APC granules dropped off from the MT ends. Immunoelectron microscopy revealed that fuzzy structures surrounding MTs were the ultrastructural counterparts for these GFP signals. The COOH-terminal region of APC was targeted to the growing MT ends without forming granular aggregates, and abruptly disappeared when MTs began to shorten. The APC lacking the COOH-terminal region formed granular aggregates that moved along MTs toward their plus ends in an ATP-dependent manner. These findings indicated that APC is a unique MT-associated protein that moves along selected MTs and concentrates at their growing plus ends through their multiple functional domains. 相似文献
9.
M Murata T J Itoh S Kagiwada R Hishida H Hotani S Ohnishi 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,75(2):127-134
We have developed a reconstituted model system to study the interaction of the Golgi membranes isolated from rabbit liver with taxol-stabilized bovine-brain microtubules without microtubule-associated proteins (MAPs). The Golgi membranes are associated with microtubules. The sheets of vesicles and the membranous tubules are observed along microtubules by direct visualization using differential-interference-contrast, dark field, or fluorescence microscopy. The monoclonal antibody against Golgi membranes suggests that the Golgi membranes, but not the contaminating vesicles, are interacting with microtubules. The degree of association is assayed quantitatively using rhodamine-labeled microtubules after separation of the complex from unbound microtubules by centrifugation upon sucrose gradient. The association is inhibited by crude MAPs, purified MAP2, or 1.0 mM ATP. However, the association neither requires the cytosol from rat liver or bovine brain nor N-ethylmaleimide, brefeldin A, or GTP-gamma-S. The association is mediated by trypsin-sensitive peripheral protein(s) on the Golgi membranes. 相似文献
10.
In this study we have applied microtubule-associated proteins (MAPs) from mammalian brain to both native and reassembled insect ovarian microtubules. Such microtubules, which are normally smooth walled, become decorated with projections similar to those observed when mammalian brain MAPs are added back to assembling or assembled mammalian brain microtubules. The mammalian MAPs were also detected as components of insect microtubules when analyzed by polyacrylamide gel electrophoresis. Our observations suggest that mammalian brain MAPs have common binding sites on microtubules from two widely different sources and indicate the degree of evolutionary conservation of such sites. 相似文献
11.
Takashi Yamauchi Hitoshi Fujisawa 《Biochemical and biophysical research communications》1982,109(3):975-981
Microtubule-associated protein 2 (MAP 2) from the rat brain was phosphorylated by calmodulin-dependent protein kinase (Kinase II) which occurs only in the brain tissues. The apparent Km for MAP 2 of Kinase II was 0.2 μ. The maximum incorporation of phosphate into MAP 2 by the action of Kinase II was about 5 mol of phosphate per mol of MAP 2, while that by the action of cAMP-dependent protein kinase was about 3 mol of phosphate per mol of MAP 2. When microtubule-associated proteins were incubated with both Kinase II and cAMP-dependent protein kinase together, about 7 mol of phosphate were incorporated into 1 mol of MAP 2. 相似文献
12.
A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs) 总被引:42,自引:48,他引:42
下载免费PDF全文

R B Vallee 《The Journal of cell biology》1982,92(2):435-442
The effect of the antimitotic drug taxol on the association of MAPs (microtubule-associated proteins) with microtubules was investigated. Extensive microtubule assembly occurred in the presence of Taxol at 37 degrees C. at 0 degrees C, and at 37 degrees C in the presence of 0.35 M NaCl, overcoming the inhibition of assembly normally observed under the latter two conditions. At 37 degrees C and at 0 degrees C, complete assembly of both tubulin and the MAPs was observed in the presence of Taxol. However, at elevated ionic strength, only tubulin assembled, forming microtubules devoid of MAPs. The MAPs could also be released from the surface of preformed microtubules by exposure to elevated ionic strength. These properties provided the basis for a rapid new procedure for isolating microtubules and MAPs of high purity from small amounts of biological material. The MAPs could be recovered by exposure of the microtubules to elevated ionic strength and subjected to further analysis. Microtubules and MAPs were prepared from bovine cerebral cortex (gray matter) and from HeLa cells. MAP 1, MAP2, and the tau MAPs, as well as species of Mr = 28,000 and 30,000 (LMW, or low molecular weight, MAPs) and a species of Mr = 70,000 were isolated from gray matter. Species identified as the 210,000 and 125,000 mol wt HeLa MAPs were isolated from HeLa cells. Microtubules were also prepared for the first time from white matter. All of the MAPs identified in gray matter preparations were identified in white matter, but the amounts of individual MAP species differed. The most striking difference in the two preparations was a fivefold lower level of MAP 2 relative to tubulin in white matter than in gray. The high molecular weigh MAP, MAP1, was present in equal ratio to tubulin in white and gray matter. These results indicate that MAP 1 and MAP2, as well as other MAP species, may have a different cellular or subcellular distribution. 相似文献
13.
Disassembly of microtubules by the action of calmodulin-dependent protein kinase (Kinase II) which occurs only in the brain tissues 总被引:8,自引:0,他引:8
Microtubules assembled by the incubation of GTP at 37 °C were disassembled by the action of calmodulin-dependent protein kinase (Kinase II) which occrs only in the brain tissues. This disassembly required the presence of ATP and physiological concentrations of Ca2+ and calmodulin. 相似文献
14.
The microtubule cytoskeleton is a dynamic filamentous structure involved in many key processes in plant cell morphogenesis including nuclear and cell division, deposition of cell wall, cell expansion, organelle movement and secretion. The principal microtubule protein is tubulin, which associates to form the wall of the tubule. In addition, various associated proteins bind microtubules either to anchor, cross-link or regulate the microtubule network within cells. Biochemical, molecular biological and genetic approaches are being successfully used to identify these microtubule-associated proteins (MAPs) in plants, and we describe recent progress on three of these proteins. 相似文献
15.
Effects of proteolysis of the extending parts of the high-molecular-weight microtubule-associated proteins on interactions between microtubules 总被引:1,自引:0,他引:1
Digestion of assembled microtubules with agarose-bound trypsin was performed to obtain microtubules which lack the extending projections, the non-tubulin-binding part of the high-molecular-weight microtubule-associated proteins. The assembly kinetics and the minimum protein concentration for assembly were the same for these trypsinated microtubules as for normal, untreated microtubules. Furthermore, the digested microtubules gave rise to the same change in turbidity per polymer mass as that found for normal microtubules. However, electron microscopy of pelleted microtubules revealed a closer packing after trypsin treatment. A substantially lower increase in specific viscosity was found upon assembly. At concentrations of above approx. 1.5 mg/ml, the viscosity of trypsin-treated microtubules was almost independent of the protein concentration, in contrast to the turbidity, which still increased. Both microtubules and the trypsin-digested microtubules were easily oriented by shear, although the flow linear dichroism signal for the microtubules after trypsin treatment was only half of that found for perfectly oriented normal microtubules. At higher shear force gradients, digested microtubules aggregated side by side as shown by electron microscopy. This was not found for normal microtubules. Even although the extending parts of the high-molecular-weight proteins are not needed for assembly, they were found to play an important role in microtubule orientation and interactions between microtubules, probably by acting as spacers between microtubules. 相似文献
16.
Konrad J. Böhm Wolfram Vater Heinz Fenske Eberhard Unger 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,800(2):119-126
In order to demonstrate the effect of microtubule-associated proteins on the protofilament number of microtubules, we used different systems of microtubule formation in vitro in which these proteins are either functionally eliminated (by DNA or glycerol) or absent (purified tubulin). The results obtained by electron microscopy of ultrathin-sectioned material indicate that under standard conditions in the presence of microtubule-associated proteins microtubules are formed consisting predominantly of 14 protofilaments. In cases of deficiency of microtubule-associated proteins, the mean value of the protofilament number is lower, and the protofilament number within the microtubule population varies remarkably. On the other hand, the action of microtubule-associated proteins is enhanced by histones resulting in increased protofilament numbers. A model is proposed illustrating that the quality and the quantity of microtubule-associated proteins bound to microtubules determine the curvature between the protofilaments and restrict the variety of their binding angles. In this way the microtubule-associated proteins may be regarded as an important factor in determining the structural fidelity of microtubules. 相似文献
17.
Microtubule-associated protein tau in a hyperphosphorylated state is the major component of the filamentous lesions that define a number of neurodegenerative diseases commonly referred to as tauopathies. Hyperphosphorylation of tau at most sites appears to precede filament assembly. Many of the hyperphosphorylated sites are serine/threonine-proline sequences. Here we show that c-Jun N-terminal kinases JNK1, JNK2 and JNK3 phosphorylate tau at many serine/threonine-prolines, as assessed by the generation of the epitopes of phosphorylation-dependent anti-tau antibodies. Of the three protein kinases, JNK2 phosphorylated the most sites in tau, followed by JNK3 and JNK1. Phosphorylation by JNK isoforms resulted in a greatly reduced ability of tau to promote microtubule assembly. These findings extend the number of candidate protein kinases for the hyperphosphorylation of tau in Alzheimer's disease and other neurodegenerative disorders. 相似文献
18.
Van Lint Johan Van Damme Jo Billiau Alfons Merlevede Wilfried Vandenheede Jackie R. 《Molecular and cellular biochemistry》1993,127(1):171-177
The signal transduction initiated by the human cytokine interleukin-8 (IL-8), the main chemotactic cytokine for neutrophils, was investigated and found to encompass the stimulation of protein kinases. More specifically, IL-8 caused a transient, dose and time dependent activation of a Ser/Thr kinase activity towards myelin basic protein (MBP) and the MBP-derived peptide APRTPGGRR patterned after the specific concensus sequence in MBP for ERK enzymes. The activated MBP kinase was furthermore identified as an extracellular signal regulated kinase (ERK1) based on several criteria such as substrate specificity, molecular weight, activation-dependent mobility shift, and recognition by anti-ERK antibodies. For comparison, the chemotactic response of neutrophils to a stimulus of bacterial origin (fMet-Leu-Phe or fMLP) was also examined and found to involve the activation of a similar ERK enzyme. The present data clearly indicate that in terminally differentiated, non-proliferating human cells, the MBP kinase/ERK activity can serve other purposes than mitogenic signaling, and that processes such as chemotaxis, induced by bacterial peptides as well as by human cytokines like IL-8, involve the regulation of ERK enzyme.Abbreviations IL-8
interleukin-8
- fMLP
fMet-Leu-Phe
- MBP
myelin basic protein
- ERK
extracellular signal regulated kinase
- MAP2
microtubule-associated protein 2
- PK-A
cAMP dependent protein kinase
- PKI
protein kinase inhibitor
- PMSF
phenyl-methanesulfonyl fluoride
- PVDF
poly-vinylidene difluoride
- HBSF
Hank's buffered salt solution
- DAB
3,3-diaminobenzidine tetrahydrochloride
- PNPP
p-nitrophenyl-phosphate
- HSA
human serum albumin
- EGTA
[ethylenebis (oxyethylenenitrilo)]tetraacetic acid
- SDS-PAGE
sodium dodecyl sulfate polyacrylamide gel electrophoresis 相似文献
19.
Microtubules were reconstituted from homogeneous brain tubulin and homogeneous preparations of two different microtubule associated proteins, the high molecular weight MAP 2 proteins or the tau proteins. The resulting microtubules were characterized by three electron microscopical procedures: Thin sectional analysis of embeded material, negative staining analysis using a STEM microscope and high resolution metal-shadowing analysis. By all three procedures MAP 2 microtubules have a much rougher surface morphology than tau microtubules, in agreement with the much higher molecular weight of the MAP 2 proteins. Tau microtubules, however, do not show the very smooth surface of microtubules assembled from pure tubulin in the absence of any microtubule associated proteins. In the case of MAP 2 microtubules thin sectional analysis as well as metal shadowing reveals that the globular protrusions seen in negative staining analysis appear as linear side arms which may extend by as much as 30 nm on both sides from the microtubular wall proper, giving rise to an overall structure with a diameter close to 100 nm. The possible implication of such structures for in vivo situations is briefly discussed as is the possibility that the "halo-effect" around microtubules seen in vivo may be due to a structural organization similar to that of MAP 2 tubules in vitro. 相似文献
20.
Chakravarthy B Rashid A Brown L Tessier L Kelly J Ménard M 《Biochemical and biophysical research communications》2008,371(4):679-683
Gap-43 (B-50, neuromodulin) is a presynaptic protein implicated in axonal growth, neuronal differentiation, plasticity, and regeneration. Its activities are regulated by its dynamic interactions with various neuronal proteins, including actin and brain spectrin. Recently we have shown that Gap-43 co-localizes with an axonal protein DPYSL-3 in primary cortical neurons. In the present study we provide evidence that Gap-43 co-localizes and potentially interacts with microtubule-associated protein MAP-2 in adult and fetal rat brain, as well as in primary neuronal cultures. Our studies suggest that this interaction may be developmentally regulated. 相似文献