首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous leishmaniasis can be either a spontaneously healing or chronic disease, depending upon the strain of parasite and the immunological status of the host. We have investigated parasite factors responsible for the variable pathogenesis observed in leishmanial infections by testing the sensitivity of several leishmanial strains to intracellular killing in lymphokine (LK) activated mouse macrophages. Significant microbicidal activity against Leishmania tropica, a strain which heals in C57BL/6 (B6) mice, was found. In contrast, a strain (Maria) which has previously been shown to induce chronic nonhealing cutaneous lesions in B6 mice was resistant to killing in activated macrophages. This resistance to killing was observed in macrophages activated by LK obtained from either Bacille Calmette-Guérin-, L. tropica, or the Maria strain infected mice. The inability of LK activated macrophages to kill the Maria strain was shown not to be due to parasite induced inhibition of killing mechanisms, since Maria strain infected, LK treated macrophages exhibited tumoricidial activity similar to uninfected macrophages. Furthermore, LK activated macrophages simultaneously infected with the Maria strain and another intracellular pathogen, Toxoplasma gondii, killed Toxoplasma, but not the Maria strain. Temperature was also found to significantly influence the multiplication and killing of Leishmania parasites. As would be expected from their cutaneous nature, L. tropica and Maria strain parasites multiplied better at 35 degrees C than at 37 degrees C. Also consistent with the failure of cutaneous strains to visceralize in immunocompetent mice was the observation that the killing of leishmanial parasites was enhanced at the higher temperature. Thus, the temperature dependent growth capacity and sensitivity to killing of a given leishmanial strain in macrophages may be important factors influencing the pathogenesis of cutaneous leishmaniasis.  相似文献   

2.
Leishmania donovani is an obligate intracellular protozoan parasite of macrophages; liver macrophages are, however, the only population of cells which express the resistant Lsh gene phenotype when these cells are infected in vitro. It was of interest to study in vitro the action of Con A-stimulated spleen cell lymphokines (LK) to protect or to cure liver macrophages from infection by L. donovani. Liver and peritoneal macrophages (PEC) from resistant (C57L/J) and susceptible (C57BL/6J) mice were infected in vitro with promastigotes before or after LK treatment; the percentage of infected macrophages was determined 4, 24, 48 and 72 h post-infection. Both macrophage populations were protected or cured by treatment with lymphokines; the cells of the resistant strain were protected or cured more effectively than those of the susceptible strain. The capacity for cure or for protection following LK treatment of liver and PEC macrophages was similar within each strain. Supernatants from the IL-2-produced MLA-144 cell line had no effect to protect or cure macrophages. This study indicates that the response of macrophages to the action of LK is also important in determining the susceptibility of mice to L. donovani; this model in vitro provides a good approximation of the response of macrophages to therapy.  相似文献   

3.
Liposomes consisting of stearylamine (SA) and egg yolk phosphatidylcholine (PC) were studied for their cytotoxic activity against freshly transformed promastigotes and intracellular amastigotes of Leishmania donovani, the causative agent of visceral leishmaniasis. More than 99% of the parasites of strain AG83 were killed within 60 min by treatment with 22 mol% SA-PC liposomes (132 microg/ml total lipids). This was further confirmed by incubating the liposome-treated promastigotes at 22 C for 96 hr. The killing activity of the liposomes progressively decreased with lowering lipid concentration. However, weak cytotoxic activity was still detected at 6.6 microg/ml lipids. Leishmanicidal activity of the liposomes became stronger with increasing SA content but was reduced with the incorporation of cholesterol in the liposomes. A similar cytotoxic effect was observed on other Indian strains of L. donovani, for example PKDL and DD8, as well as on species such as Leishmania donovani S1, Leishmania donovani infantum, Leishmania tropica, Leishmania amazonensis, and Leishmania mexicana. However, freshly transformed promastigotes appeared to be more susceptible than the ones subcultured. The strong leishmanicidal activity of SA-PC liposomes was also demonstrated toward intracellular L. donovani amastigotes. The SA-bearing vesicles could effectively inhibit the growth and multiplication of the parasites within the macrophages. The cytolytic activity of these liposomes on leishmanial parasites and low toxicity on host macrophages may, thus, find application in the therapy of leishmaniasis.  相似文献   

4.
Lymphokine (LK) treatment of resident peritoneal macrophages from C3H/HeN mice induced two antimicrobial activities against Leishmania tropica: increased resistance of activated macrophages to infection with amastigotes and intracellular destruction of those parasites that entered activated cells. The onset and duration of these two antimicrobial activities were quite different. Resistance to infection was observed as early as 4 hr after the addition of LK, became maximal at 8 hr, and persisted in a subpopulation of treated cells for as long as 72 hr. In contrast, intracellular killing occurred with as little as 4 hr of LK treatment after infection, and maximal killing was observed in cultures exposed to LK 24 hr. Intracellular killing capacity of lymphokine-treated cells was progressively lost in macrophages treated longer than 12 hr before exposure to parasites. This decay in ability to destroy intracellular L. tropica was also seen in macrophages cultured longer than 12 hr before LK treatment, and may reflect loss of macrophage responsiveness to LK with increasing time in vitro. Thus, treatment of macrophages with lymphokines induced both a stable change in cell-parasite interactions, resistance to infection, and a short-lived capacity to destroy intracellular amastigotes.  相似文献   

5.
The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade, we are unable to visualize surface bound C3 on L. donovani promastigotes unless heat inactivated serum is also present. We conclude that all Leishmania spp. promastigotes are susceptible to lysis by normal serum independent of antibody. The presence of small amounts of naturally occurring antibody in human serum enhances the susceptibility of L. donovani promastigotes to lysis by activating the classical complement pathway.  相似文献   

6.
Ilg T 《The EMBO journal》2000,19(9):1953-1962
Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L. mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host.  相似文献   

7.
Abstract The proteinases of three species of Leishmania have been analysed by electrophoresis. Amastigotes of L. mexicana mexicana have several high-activity, low- M r cysteine proteinases which are absent from log-phase promastigotes of L. m. mexicana and from all developmental stages of the other species analysed ( L. donovani and L. major ). Low-activity, low- M r proteinases were present in populations of stationary-phase promastigotes of L. m. mexicana . All three species of Leishmania had higher M r proteinases, a number of which showed developmental regulation, some of them being stage-specific. Significantly, at all stages of the life cycle in all three species a 68-kDa proteinase was apparent. In its size, sensitivity to inhibitors and ability to bind concanavalin A-agarose, this resembles the major surface protein thought to be present in all Leishmania species and which has recently been reported to possess proteinase activity in L. major promastigotes.  相似文献   

8.
Luminometry has been used to measure the respiratory burst of rabbit peritoneal neutrophils that is elicited by different forms and species of Leishmania and Herpetomonas. Mid-log phase and metacyclic promastigotes of L. major evoked large responses; that due to metacyclics was lower and slower, but they also bound in smaller numbers than mid-log phase cells. Promastigotes of L. mexicana mexicana also stimulated a large respiratory burst whereas amastigotes elicited little or none. Leishmania donovani promastigotes and culture forms of H. muscarum muscarum and H. m. ingenoplastis all evoked large responses by neutrophils. There was, however, very little response to L. mexicana mexicana promastigotes, L. donovani promastigotes or H. muscarum muscarum when they were added in large numbers. This 'inhibition' was not apparent with L. major.  相似文献   

9.
Leishmania multiplying within either human monocyte-derived macrophages (HM) or mouse peritoneal exudate cells (PEC) have recently been shown to be susceptible to pentavalent antimony (Sb) by several investigators. The Sb susceptibilities of 5 cutaneous strains of Leishmania were compared in the 2 model systems, with infection of the macrophages initiated with either amastigotes or promastigotes. The susceptibility to Sb of amastigote-induced infections was statistically the same as the susceptibility of promastigote-induced infections for 4 strains in the PEC model, and for 3 of 4 strains in the HM model. Promastigote-induced infections with the 5th strain were non-viable in both macrophage types. The susceptibility of Leishmania to Sb within PEC was the same statistically as that of organisms within HM for amastigote-induced infections for 4 of 5 strains and for promastigote-induced infections by 3 of 4 strains. These data suggested that the susceptibilities of organisms to Sb within PEC and HM were generally comparable and that either amastigotes or viable promastigotes could be used to initiate the infection. The several technical advantages of the PEC model may make it more useful than the HM model for testing susceptibility to Sb. The modest susceptibility of some strains in both models to the peak serum amounts of antimony which may be achieved by presently recommended treatment regimes may partially explain the high current failure rate in simple cutaneous disease. The susceptibility of one strain within peritoneal cells to primaquine and WR 6026 (8-aminoquinolines), ketoconazole (an imidazole) and formycin B (an inosine analogue) was similar to that previously reported in human macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
It is well documented that activated macrophages, but not nonactivated ones, kill tumor cells in vitro without damaging normal cells. We, however, have previously shown that embryo-derived teratocarcinoma cells (F9, P19, PCC4) are efficiently killed by nonactivated macrophages as well as by activated ones. Whereas other tumor cells are killed extracellularly by macrophages, we found that F9 teratocarcinoma cells are phagocytosed alive by macrophages and subsequently killed intracellularly by a process dependent on intact lysosomal function. Neither the H-2 antigens nor the mRNAs for the alpha-chain and beta 2-microglobulin are detectable in embryo-derived teratocarcinoma cells. An obvious explanation for this unique killing is that the nonactivated macrophages recognize and kill these cells due to their lack of class I MHC antigen expression, assuming that class I MHC gene products on the target cells switch off the cytolytic machinery of nonactivated macrophages. Our present findings demonstrate that there is no correlation between H-2 antigen expression on tumor cells and their susceptibility to killing by macrophages. Retinoic acid-differentiated F9 cells and P19 cells expressing H-2 antigen after exposure to MAF (IFN-gamma) were sensitive to the killing by nonactivated macrophages. Hybrids that arose from fusion of P19 teratocarcinoma cells with embryonal normal fibroblasts (C57BL/6), which displayed the morphology of embryonal carcinoma stem cells and expressed H-2 antigens, were also sensitive to the killing by nonactivated macrophages. On the other hand, the H-2-negative testicular 402AX teratocarcinoma cells and K1735P melanoma cells were both resistant to the killing by nonactivated macrophages. We concluded that the unique killing of embryo-derived teratocarcinoma cells by nonactivated murine macrophages is not related to a lack of H-2 antigen expression.  相似文献   

11.
Forms of cutaneous leishmaniasis are caused by Leishmania major, L. tropica, L. mexicana, L. amazonensis and L. panamensis. Like all leishmanial species, these are obligate intracellular parasites of the mononuclear phagocyte system, with a restricted range of vertebrate hosts including humans, dogs, rodents and arboreal animals. The disease evolves chronically, usually with slow healing, but can sometimes become nonhealing, diffuse disseminating or relapsing. The parasite exists within the macrophages of the vertebrate host in the amastigote form. These transform into extracellular flagellated promastigotes in the gut of the sandfly vectors. The promastigotes can then be injected into new vertebrate hosts as the insects feed. Promastigotes, and to a lesser extent amastigotes, can now be grown in tissue culture. This, together with the use of inbred mouse strains that are susceptible to most of the Leishmania species which are pathogenic for man, has facilitated great advances in our understanding of the immunological control of leishmaniasis. However, as Eddy Liew points out, there are still many unanswered questions.  相似文献   

12.
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.  相似文献   

13.
Although Leishmania metacyclic promastigotes are generally considered resistant to human complement, studies of in vitro-cultured axenic stationary promastigotes using serum concentrations that approximate physiological plasma conditions indicate complement sensitivity. Natural Leishmania infection is caused by sand fly-inoculated promastigotes, whose complement resistance has not been analyzed systematically. We compared Leishmania susceptibility to human complement in L. infantum promastigotes derived from in vitro cultures and from sand flies. Phlebotomus perniciosus sand flies were fed with axenic promastigotes, L. infantum-infected U-937 cells, or spleen cells from L. infantum-infected hamsters. On selected days post-feeding, flies were dissected and promastigotes isolated; in addition, axenic promastigotes were obtained from culture at equivalent days of growth. In near-physiological serum concentration and temperature conditions, measurement of real-time kinetics of propidium iodide uptake showed that approximately 90% of axenic- and sand fly-derived promastigotes were rapidly killed by complement. We found no substantial differences between promastigotes from axenic culture, those isolated from flies on different post-feeding days, or those generated in flies fed with distinct inocula. The results indicate that Leishmania susceptibility to human complement is independent of promastigote developmental stage in the sand fly mid-gut and in axenic culture.  相似文献   

14.
Peritoneal-and pulmonary macrophages can be activated in vitro with lymphokines (LK) or IFN-gamma, without exogenous lipopolysaccharide, for fungicidal activity against several pathogenic fungi. However, neither the biochemical nor metabolic events of the activation process or of the effector phase have been defined. In the present work we sought to elucidate these events with time-course studies using inhibitors of protein synthesis as well as immunosuppressive agents. We found that protein synthesis inhibitors abrogated the activation process, because cycloheximide (CHX) (1-2 micrograms/ml) prevented activation of macrophages for fungicidal activity against Candida albicans, Blastomyces dermatitidis, and Paracoccidioides brasiliensis. Blocking of the activation process by CHX was not due to macrophage cytotoxicity, and CHX did not impair the ability of nonactivated macrophages to kill Candida parapsilosis. In kinetic studies we showed that activation of macrophages was induced in 4 hr of LK treatment and that CHX had no effect if added after this time. In contrast to CHX, therapeutic concentrations of hydrocortisone (HC), such as less than or equal to 5 micrograms/ml, or cyclosporin A (CsA), 5 micrograms/ml, did not significantly inhibit LK activation of macrophages for killing of fungi. In the effector phase, the fungicidal capacity of activated macrophages in short-term (less than or equal to 4 hr) killing assays could not be abrogated by CHX (5 micrograms/ml), HC (100 micrograms/ml), or CsA (10 micrograms/ml). These results demonstrate that the activation but not the effector mechanism of macrophages for fungicidal activity is blocked by inhibition of protein synthesis. In contrast, therapeutic concentrations of HC or CsA may not interfere with activation of macrophages or their killing mechanisms, thus providing a rationale for antifungal immunotherapy in certain clinical situations (e.g., infection in the immunosuppressed patient).  相似文献   

15.
The polypeptides of Leishmania mexicana mexicana (M379), L. m. amazonensis (LV78), L. major (LV39) and L. d. donovani (LV39) amastigotes and cultured promastigotes have been analysed by SDS-polyacrylamide gel electrophoresis. The polypeptide banding patterns of the promastigotes of the four species were quite similar, but distinct differences were detected between those of amastigotes. The results suggest that the various species of Leishmania are adapted differently for survival and growth in the mammalian host. The polypeptides of L. m. mexicana amastigotes were very rapidly hydrolysed unless protected by the cysteine proteinase inhibitor leupeptin.  相似文献   

16.
Amastigotes and cultured promastigotes of Leishmania mexicana mexicana and L. m. amazonensis, cultured promastigotes of L. donovani and L. tarentolae, and the culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis all possessed four phosphoribosyltransferase (PRTase) activities: adenine PRTase, hypoxanthine PRTase, guanine PRTase and xanthine PRTase. The enzymes of L. m. mexicana required divalent cations for activity; Mn2+ or Co2+ produced maximal activity in most cases. Hypoxanthine PRTase, guanine PRTase and xanthine PRTase from all organisms were sedimentable in part, suggesting that they may occur within glycosomes. The enzymes of L. m. mexicana cultured promastigotes were inhibited by a range of purine analogues.  相似文献   

17.
The protozoan parasite Leishmania mexicana proliferates within macrophage phagolysosomes in the mammalian host. In this study we provide evidence that a novel class of intracellular beta1-2 mannan oligosaccharides is important for parasite survival in host macrophages. Mannan (degree of polymerization 4-40) is expressed at low levels in non-pathogenic promastigote stages but constitutes 80 and 90% of the cellular carbohydrate in the two developmental stages that infect macrophages, non-dividing promastigotes, and lesion-derived amastigotes, respectively. Mannan is catabolized when parasites are starved of glucose, suggesting a reserve function, and developmental stages having low mannan levels or L. mexicana GDPMP mutants lacking all mannose molecules are highly sensitive to glucose starvation. Environmental stresses, such as mild heat shock or the heat shock protein-90 inhibitor, geldanamycin, that trigger the differentiation of promastigotes to amastigotes, result in a 10-25-fold increase in mannan levels. Developmental stages with low mannan levels or L. mexicana mutants lacking mannan do not survive heat shock and are unable to differentiate to amastigotes or infect macrophages in vitro. In contrast, a L. mexicana mutant deficient only in components of the mannose-rich surface glycocalyx differentiates normally and infects macrophages in vitro. Collectively, these data provide strong evidence that mannan accumulation is important for parasite differentiation and survival in macrophages.  相似文献   

18.
This study was undertaken to try to determine the possible anti-leishmanial activity of S2-Complex, an organic complex of copper chloride, ascorbic acid, and nicotinamide. The promastigotes, axenic amastigotes, and intracellular amastigotes of both Leishmania major and Leishmania tropica were incubated with different concentrations of S2-Complex. The EC50 for each form was calculated. Results show that all forms of the parasites were dose dependently inhibited by S2-Complex. The promastigotes of both parasites were the most resistant with highest EC50 followed by axenic amastigotes. While intracellular amastigotes were the most sensitive with the lowest EC50.These results indicate that S2-Complex has a direct anti-leishmanial effect. When mice were treated with S2-Complex or BCG for four days before harvesting the macrophages, and the macrophages infected with both L. major and L. tropica, they showed increased phagocytosis and increased parasite killing. The results of S2-Complex were not statistically different from the immunomodulating agent BCG. These results indicate that S2-Complex has an immunomodulating effect in addition to the direct anti-leishmanial effect.  相似文献   

19.
A major difference between the metabolism of Leishmania species amastigotes and cultured promastigotes was found in the area of CO2 fixation and phosphoenolpyruvate metabolism. Malate dehydrogenase (EC 1.1.1.37) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) were at much higher activities in amastigotes than promastigotes of both L. m. mexicana and L. donovani, whereas the reverse was true of pyruvate kinase (EC 2.7.1.40). Pyruvate carboxylase (EC 6.4.1.1) and malic enzyme (carboxylating) (EC 1.1.1.40) could not be detected in L. m. mexicana amastigotes. Promastigotes of L. m. mexicana had a high NAD-linked glutamate dehydrogenase activity in comparison to amastigotes, whereas NADP-linked glutamate dehydrogenase activity was detected only in amastigotes. Leishmania m. mexicana culture promastigotes were killed in vitro by the trivalent antimonial Triostam (LD50, 20 micrograms/ml) and the trivalent arsenical melarsen oxide (LD50, 20 micrograms/ml), but they were unaffected by Pentostam. Neither antimonial drug significantly inhibited leishmanial hexokinase (EC 2.7.1.2), phosphofructokinase (EC 2.7.1.11), pyruvate kinase, malate dehydrogenase or phosphoenolpyruvate carboxykinase, whereas melarsen oxide was a potent inhibitor of all the enzymes tested except phosphoenolpyruvate carboxykinase.  相似文献   

20.
A range of trypanosomatids (amastigotes and cultured promastigotes of Leishmania mexicana mexicana, cultured promastigotes of L. m. amazonensis, L. donovani and L. tarentolae, culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis and procyclic trypomastigotes of Trypanosoma brucei brucei) have been surveyed for the presence of purine- and pyrimidine-metabolising enzymes. Several common features were observed, including the presence of nucleosidases, catabolic phosphorylases, phosphoribosyltransferases, kinases and cytidine deaminase and the apparent absence of AMP deaminase, anabolic purine phosphorylase and cytosine deaminase. Significant differences between species were discovered, notably in adenine and adenosine metabolism. Nucleoside phosphotransferase active on inosine was detected in insect trypanosomatids but not in L. m. mexicana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号