共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationship between the susceptibility of various bacteria to active oxygen species and to intracellular killing by macrophages 总被引:8,自引:0,他引:8
The susceptibilities of six micro-organisms to active oxygen species generated in the xanthine oxidase-mediated bactericidal system were as follows: Escherichia coli 81 greater than or equal to Listeria monocytogenes EGD greater than or equal to Salmonella typhimurium HKB-1 greater than or equal to Staphylococcus aureus Smith much greater than Mycobacterium tuberculosis H37Rv approximately equal to Candida albicans NIH A207 (the last two organisms were essentially resistant to this system). The H2O2-Fe-mediated halogenation system exhibited a higher microbicidal activity. When the micro-organisms were compared for their sensitivity to bactericidal activity of resident mouse peritoneal macrophages (M phi s), C. albicans, Staph. aureus and E. coli were killed rapidly, whereas M. tuberculosis, L. monocytogenes and S. typhimurium were more resistant. In tests for the ability to trigger an oxidative burst in mouse peritoneal M phi s (as measured by chemiluminescence), Staph. aureus showed the highest activity followed by the other organisms in the following order: C. albicans greater than E. coli greater than L. monocytogenes congruent to M. tuberculosis. S. typhimurium exhibited no triggering activity. The high susceptibility of Staph. aureus and E. coli to M phi bactericidal activity, and the partial resistance of L. monocytogenes and M. tuberculosis, correlated with their susceptibility to active oxygen and the H2O2-Fe-mediated halogenation reaction. 相似文献
2.
The virulence of five strains of Mycoplasma pulmonis, as judged by their ability to survive in the respiratory tract and induce pneumonia in CBA mice, was related to the ability of viable organisms to persist in the peritoneal cavity. This appeared to be the result of differences in the ability of the strains to resist killing by peritoneal macrophages in vivo. It is suggested that resistance to phagocytosis by macrophages is an important determinant of virulence for M. pulmonis. 相似文献
3.
Resistance of various strains of mycobacteria to killing by activated macrophages in vivo 总被引:12,自引:0,他引:12
A variety of experimental infections with pathogenic mycobacteria are associated with the development of persistent disease, in which little or no changes in the numbers of the infectious organism can be detected. This report describes a simple experimental model designed to test the hypothesis that this persistence may reflect in part the ability of these organisms to resist the enhanced bacteriostatic and bactericidal properties acquired by host macrophages as a result of these mycobacterial infections. To examine this possibility mice were inoculated with test organisms at a time when these animals were expressing very high levels of nonspecific resistance, and hence macrophage activation, as a result of a prior intravenous infection with Mycobacterium bovis bacillus Calmette-Guerin (BCG). The results show that the test organisms fall into three groups; (a) those, such as Mycobacterium tuberculosis, which were sensitive to the presence of activated macrophages, (b) those, such as Mycobacterium avium and Mycobacterium kansasii, which were insensitive, and (c) one organism, Mycobacterium intracellulare, in which progressive growth of the infection was significantly improved. These results are consistent with the hypothesis that some mycobacteria, particularly those associated with persistent disease, possess an intrinsic resistance to host bactericidal and bacteriostatic mechanisms in vivo. 相似文献
4.
Differences in initial rate of intracellular killing of Salmonella typhimurium by resident peritoneal macrophages from various mouse strains 总被引:8,自引:0,他引:8
J T van Dissel P C Leijh R van Furth 《Journal of immunology (Baltimore, Md. : 1950)》1985,134(5):3404-3410
To determine the underlining mechanism of the difference in innate susceptibility of mouse strains to infection by Salmonella typhimurium, the ingestion and in vitro intracellular killing of S. typhimurium by resident peritoneal macrophages of mouse strains that differ in natural resistance to this microorganism has been studied. The results revealed that the rate constants of in vitro phagocytosis (Kph) in the presence of inactivated rabbit immune serum did not differ between macrophages of susceptible C57BL/10 and resistant CBA mice (for both strains: Kph = 0.021 min-1). The rate constant of in vitro intracellular killing (Kk) was determined 1) after in vivo phagocytosis (CBA, Kk = 0.055 min-1; C57BL/10, Kk = 0.031 min-1), 2) after in vitro phagocytosis of preopsonized bacteria (CBA, Kk = 0.020 min-1; C57BL/10, Kk = 0.012 min-1), and 3) during continuous phagocytosis in vitro (CBA, Kk = 0.029 min-1; C57BL/10, Kk = 0.013 min-1). With all three approaches, the initial rate of intracellular killing by normal macrophages of Salmonella-resistant CBA mice amounted to about 1.7 times the value found for macrophages of susceptible C57BL/10 mice (p less than 0.01). This trait difference was independent of the previous way of ingestion of the bacteria, unaffected by the kind of opsonization, and specific for S. typhimurium, because Staphylococcus aureus and Listeria monocytogenes were killed by macrophages of these mouse strains with equal efficiency (p greater than 0.50). These findings indicate that a difference in genetic background expressed in the efficacy of intracellular killing by resident peritoneal macrophages immediately upon ingestion of S. typhimurium is relevant for the innate resistance of mice against S. typhimurium. 相似文献
5.
To determine whether macrophages can discriminate in an immunologically specific manner between the intracellular pathogens which they inhibit or kill, unelicited peritoneal macrophages from mice infected with either of two related but antigenically dissimilar protozoa were challenged with these protozoa in vitro. Experimental conditions were varied in an attempt to establish a state in vivo in which macrophage specificity might be demonstrated. No differences could be discerned between the ability of macrophages from three different strains of mice infected with the protozoa to kill Besnoitia and Toxoplasma. The effect of macrophages on Toxoplasma as compared with Besnoitia did not evolve or vary during development, expression, or decline of an immune response, i.e., with varying times after infection of mice as well as with varying times after treatment of mice with irradiated Toxoplasma. The route of infection could not be shown to confer specificity on macrophages, as subcutaneous and intraperitoneal inoculation of Toxoplasma did not lead to differential ability of macrophages to inhibit or kill the protozoa. The different strains of protozoa used for infection of mice did not affect the ability of peritoneal macrophages from Besnoitia- and Toxoplasma-infected mice to inhibit multiplication of or kill Besnoitia and Toxoplasma comparably in vitro. Peritoneal macrophages of mice treated with Corynebacterium parvum kill both organisms efficiently. These macrophages were employed to determine whether stimulation of macrophages by treatment of mice with a substance unrelated to the protozoa would produce activated macrophages. Uninfected mice and mice infected with either Besnoitia or Toxoplasma were challenged with varying doses of the protozoa in parallel with examination of macrophages from the same groups of mice in vitro to determine whether the presence of stimulated macrophages in the peritoneal cavity was necessary for protection against Toxoplasma and Besnoitia, and if so if their presence was sufficient for protection. Only mice with activated peritoneal macrophages were protected. However, protection was greater when the primary infection was with the same organisms used for challenge at a time when macrophages inhibited or killed both protozoa efficiently in vitro. The possible role of other effector cells, subpopulations of macrophages of different functional abilities in various sites, and antibody or other lymphocyte products acting in concert with macrophages as factors which may explain the differences observed between in vivo protection and in vitro capacity to inhibit or kill the protozoa are discussed. 相似文献
6.
The susceptibility of strains of Mycobacterium tuberculosis to catalase-mediated peroxidative killing 总被引:3,自引:0,他引:3
At low pH and with continuous low concentrations of hydrogen peroxide generated in situ, catalase was able to replace peroxidase in the peroxidase/hydrogen peroxide/iodide microbicidal system. The system was effective against Escherichia coli and Mycobacterium tuberculosis. Iodide could not be replaced by chloride. The system was effective in lactate buffer, but not in citrate/phosphate buffer. Strains of M. tuberculosis with high and low virulence were equally susceptible. The observations are discussed in the context of an involvement of host-cell catalase in a possible intracellular killing mechanism against M. tuberculosis. 相似文献
7.
Chromosome-mediated resistance of Yersinia enterocolitica serotype O9 to intracellular killing by mouse peritoneal macrophages 总被引:1,自引:0,他引:1
Alfonso Ruiz-Bravo María Jimenez-Valera Antonio Sampedro Encarnación Moreno 《FEMS immunology and medical microbiology》1994,9(4):317-324
Abstract The survival of Yersinia enterocolitica serotype O9 within mouse peritoneal macrophages was investigated. To evaluate the role of the virulence plasmid in the resistance to intracellular killing, an isogenic pair of virulent (plasmid-bearing) and avirulent (plasmid-less) O9 strains was used. The virulent strain was able to express plasmid-encoded outer membrane proteins and to colonize the Peyer's patches of orally infected mice. When mice were infected intraperitoneally, both strains were recovered at similar rates and over the same time from the peritoneal cavity. When in vitro assays were performed, both strains showed similar resistance to intracellular killing by monolayers of resident and inflammatory peritoneal macrophages. Previous opsonization of bacteria did not modify their survival within macrophage monolayers. We concluded that serotype O9 strains display a chromosome-mediated resistance to intracellular killing by mouse peritoneal macrophages. Moreover, macrophage resistance does not seem to be of importance for virulence of serotype O9 strains in mice. 相似文献
8.
A monoclonal antibody to Histoplasma capsulatum alters the intracellular fate of the fungus in murine macrophages
下载免费PDF全文

Shi L Albuquerque PC Lazar-Molnar E Wang X Santambrogio L Gácser A Nosanchuk JD 《Eukaryotic cell》2008,7(7):1109-1117
Monoclonal antibodies (MAbs) to a cell surface histone on Histoplasma capsulatum modify murine infection and decrease the growth of H. capsulatum within macrophages. Without the MAbs, H. capsulatum survives within macrophages by modifying the intraphagosomal environment. In the present study, we aimed to analyze the affects of a MAb on macrophage phagosomes. Using transmission electron and fluorescence microscopy, we showed that phagosome activation and maturation are significantly greater when H. capsulatum yeast are opsonized with MAb. The MAb reduced the ability of the organism to regulate the phagosomal pH. Additionally, increased antigen processing and reduced negative costimulation occur in macrophages that phagocytose yeast cells opsonized with MAb, resulting in more-efficient T-cell activation. The MAb alters the intracellular fate of H. capsulatum by affecting the ability of the fungus to regulate the milieu of the phagosome. 相似文献
9.
Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism 总被引:59,自引:0,他引:59
S J Green M S Meltzer J B Hibbs C A Nacy 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(1):278-283
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages. 相似文献
10.
E Bonvini T Hoffman R B Herberman L Varesio 《Journal of immunology (Baltimore, Md. : 1950)》1986,136(7):2596-2604
Treatment of mouse peritoneal macrophages with IFN-gamma augmented the intracellular content of S-adenosylmethionine, as measured by quantitative high-performance liquid chromatography. Accumulation of S-adenosylhomocysteine, a competitive product of S-adenosylmethionine, was not detectable, either by direct measurement of absorbance or by radioisotopic techniques in IFN-gamma-treated macrophages. However, accumulation of S-adenosylhomocysteine was observed after treatment of macrophages with known inhibitors of S-adenosylhomocysteine catabolism. No inhibition of phospholipid methylation was observed upon IFN-gamma treatment, indicating that no reduction of the S-adenosylmethionine to S-adenosylhomocysteine ratio is induced by IFN-gamma in murine macrophages. The increased content of S-adenosylmethionine was associated with the acquisition of tumoricidal activity by macrophages upon IFN-gamma treatment. LPS also augmented the cellular content of S-adenosylmethionine and activated macrophages to become cytotoxic, suggesting a common mechanism of action for IFN-gamma and LPS in macrophage activation. Treatment of macrophages with cycloleucine, an agent that induces depletion of cellular S-adenosylmethionine, made the macrophages refractory to induction of cytolytic activity by IFN-gamma, suggesting a critical role for S-adenosylmethionine in macrophage activation. 相似文献
11.
Lindgren H Stenman L Tärnvik A Sjöstedt A 《Microbes and infection / Institut Pasteur》2005,7(3):467-475
Intracellular killing of Francisella tularensis by macrophages depends on interferon-gamma (IFN-gamma)-induced activation of the cells. The importance of inducible nitric oxide synthase (iNOS) or NADPH phagocyte oxidase (phox) for the cidal activity was studied. Murine IFN-gamma-activated peritoneal exudate cells (PEC) produced nitric oxide (NO), measured as nitrite plus nitrate, and superoxide. When PEC were infected with the live vaccine strain, LVS, of F. tularensis, the number of viable bacteria was at least 1000-fold lower in the presence than in the absence of IFN-gamma after 48 h of incubation. PEC from iNOS-gene-deficient (iNOS-/-) mice killed F. tularensis LVS less effectively than did PEC from wild-type mice. PEC from phox gene-deficient (p47phox-/-) mice were capable of killing the bacteria, but killing was less efficient, although still significant, in the presence of NG-monomethyl-L-arginine (NMMLA), an inhibitor of iNOS. A decomposition catalyst of ONOO-, FeTPPS, completely reversed the IFN-gamma-induced killing of F. tularensis LVS. Under host cell-free conditions, F. tularensis LVS was exposed to S-nitroso-acetyl-penicillamine (SNAP), which generates NO, or 3-morpholinosydnonimine hydrochloride (SIN-1), which generates NO and superoxide, leading to formation of ONOO-. During 6 h of incubation, SNAP caused no killing of F. tularensis LVS, whereas effective killing occurred in the presence of equimolar concentrations of SIN-1. The results suggest that mechanisms dependent on iNOS and to a minor degree, phox, contribute to the IFN-gamma-induced macrophage killing of F. tularensis LVS. ONOO- is likely to be a major mediator of the killing. 相似文献
12.
《Biotechnic & histochemistry》2013,88(5-6):247-252
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages. 相似文献
13.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylene-diaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages. 相似文献
14.
Mouse peritoneal macrophages (MPM) or human blood monocytes (HBM) co-cultured with intracellular (amastigote; AMA) forms of Trypanosoma cruzi in the presence of human lactoferrin (LF) took up greater numbers of organisms than in the absence of LF; the proportion of phagocytes taking up AMA was also significantly increased. Pretreatment of either MPM or AMA with LF also enhanced cell-parasite association. By immunofluorescence, HBM, MPM, and AMA were found to bind LF. By using 125I-labeled LF, each AMA was determined to have an average 1.1 X 10(6) surface receptors for LF. The enhancing effect of LF on cell-parasite association was inhibited when either rabbit anti-LF IgG or alpha-methyl mannoside (alpha-MM) was present during the incubation of MPM or AMA with LF, or when AMA pretreated with LF were then incubated with either of the LF blocking agents. Although these findings seemed to suggest that LF increased MPM-AMA association by bridging these cells, the LF effect was not inhibited when MPM pretreated with LF were subsequently incubated with either alpha-MM or anti-LF. Furthermore, LF stimulated phagocytosis, as denoted by a significant increase in latex particle uptake after LF treatment of MPM. The intracellular killing capacity of HBM or MPM was also stimulated by LF and was denoted by increased AMA destruction after LF treatments. The possibility that LF only appeared to increase the rate of AMA killing by simply promoting the engulfment of greater numbers of AMA that would then be destroyed intracellularly seemed unlikely because untreated MPM that had already taken up untreated AMA killed greater numbers of AMA when they were subsequently incubated with LF. The results of experiments with scavengers of oxygen reduction intermediates and of nitroblue tetrazolium reduction tests indicated that H2O2, O2- and 1O2 were involved in the killing of AMA by LF-treated MPM. These results suggest that LF, a glycoprotein secreted by neutrophils in greater than normal amounts during inflammation, may contribute to macrophage clearance of AMA released from infected host cells. 相似文献
15.
In our studies of the health effects of internalized depleted uranium, we developed a simple and rapid light microscopic method to stain specifically intracellular uranium deposits. Using J774 cells, a mouse macrophage line, treated with uranyl nitrate and the pyridylazo dye 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, uranium uptake by the cells was followed. Specificity of the stain for uranium was accomplished by using masking agents to prevent the interaction of the stain with other metals. Prestaining wash consisting of a mixture of sodium citrate and ethylenediaminetetraacetic acid eliminated staining of metals other than uranium. The staining solution consisted of the pyridylazo dye in borate buffer along with a quaternary ammonium salt, ethylhexadecyldimethylammonium bromide, and the aforementioned sodium citrate/ethylenediaminetetraacetic acid mixture. The buffer was essential for maintaining the pH within the optimum range of 8 to 12, and the quaternary ammonium salt prevented precipitation of the dye. Staining was conducted at room temperature and was complete in 30 min. Staining intensity correlated with both uranyl nitrate concentration and incubation time. Our method provides a simple procedure for detecting intracellular uranium deposits in macrophages. 相似文献
16.
Macrophage activation to kill Leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents 总被引:12,自引:0,他引:12
Resident peritoneal macrophages and macrophages elicited by injection of C3H/HeN mice with sterile inflammatory agents were exposed to amastigotes of Leishmania tropica in vitro and treated with lymphokines. Resident macrophages developed the capacity to kill intracellular parasites; microbicidal activity of activated resident cells ranged between 60 and 80%. In contrast, inflammatory macrophages responded poorly to lymphokines for intracellular killing of amastigotes; microbicidal activity of cells elicited with chronic inflammatory agents ranged between 0 and 45%. Defective intracellular killing of L. tropica by inflammatory macrophages was independent of the agent used to elicit the cells, but was clearly associated with the number of immature macrophages in the population. That intracellular killing capacity may reflect the presence of a killing mechanism in tissue-derived cells that is not yet developed in undifferentiated macrophages is supported by studies with peripheral blood monocytes: these cells were also incapable of eliminating intracellular amastigotes in the presence of potent activating factors. These observations on inflammatory macrophage interactions with amastigotes may provide important insights into the chronic nature of leishmanial disease. 相似文献
17.
18.
19.
Interleukin (IL)-1beta is a proinflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. We have recently found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, we investigated the ability of UA for inducing IL-1beta production in pMphi from 4 different strains of female mice (C57BL/6J, C3H/He, DDY, and ICR), as well as an established macrophage line (RAW264.7 cells). The levels of IL-1beta released from UA-treated pMphi of C57BL/6J and DDY mice were significantly lower than from those of ICR mice, whereas IL-1beta was not released from the pMphi of C3H/He mice or RAW264.7 cells. Of paramount importance, CD36 as well as the NOX components gp91phox and p47phox (C3H/He mice) and gp91phox (RAW264.7 cells) were scarcely detected. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi. Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, our results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility. 相似文献
20.
D A Vignali Q D Bickle P Crocker M G Taylor 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(10):4030-4037
Starch-elicited murine peritoneal macrophages were able to kill schistosomula in vitro in the presence of a variety of immune sera. Dose response experiments revealed the superior "quality" of serum from mice vaccinated four times with highly irradiated cercariae (4xVMS) in mediating killing at titers comparable to the other sera tested. B3A, a partially protective mAb (IgG3) that recognizes a Mr 16,000 schistosomular surface Ag, mediated higher levels of killing than any of the sera at comparable titers. In contrast, H12, a partially protective mAb (IgG2a; anti-Mr 32,000), and C1C9, a nonprotective McAb (IgG3; anti-Mr 38,000) failed to mediate killing. Two anti-Mac-1 alpha-chain mAb (5C6 and M1/70) mediated substantial dose-dependent blocking of 4xVMS and B3A-mediated macrophage killing. In contrast, a mAb to the Mac-1-associated beta-chain was less effective, whereas the mAb F4/80 did not significantly block killing despite being present on this macrophage population. Although whole 5C6 Ig was the most efficient at inhibiting B3A-mediated killing, 5C6 Fab fragments were still effective at concentrations as low as 0.5 microgram/ml (10 nM). On a molar basis 5C6 appeared to be more effective at blocking 4xVMS-mediated killing than M1/70, while only M1/70 was capable of inhibiting macrophage adherence to schistosomula. These findings, together with the observation that anti-alpha chain mAb were far more effective at blocking killing than the anti-beta-chain mAb, rules out the possibility that 5C6 is nonspecifically inhibiting B3A-FcR interaction. The data also imply a functional relationship between Mac-1 and FcRIII, the receptor for B3A, in macrophage killing. 相似文献