首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this research was to examine the effectiveness of a 6-week plyometric training period on power production of the posterior shoulder and elbow musculature. Twenty-eight normal college-aged volunteers (5 men, 23 women) were divided into control and plyometric training groups. Both groups were pre- and posttested using shoulder and elbow isokinetic tests and the Closed Kinetic Chain Upper Extremity Stability Test. The plyometric training group (n = 13) showed significant improvement in the power generated in the elbow extensor muscles; however, no other significant changes were observed within this group. The control group (n = 15) showed no significant changes in power output over the course of this study. It was concluded that plyometric training of the upper extremity enhances power production of the elbow extensor muscles. Therefore, plyometrics may help improve performance in overhead sports that require power.  相似文献   

2.
The object of this study was to examine changes in muscular strength, power, and resting hormonal concentrations during 6 weeks of detraining (DTR) in recreationally strength-trained men. Each subject was randomly assigned to either a DTR (n = 9) or resistance training (RT; n = 7) group after being matched for strength, body size, and training experience. Muscular strength and power testing, anthropometry, and blood sampling were performed before the experimental period (T1), after 3 weeks (T2), and after the 6-week experimental period (T3). One-repetition maximum (1RM) shoulder and bench press increased in RT at T3 (p 相似文献   

3.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

4.
An analysis of horizontal elbow flexion at maximal velocity was made to determine how different loads affected power output. Twenty male subjects operated a specially constructed dynamometer initially performing a maximal effort isometric trial with the elbow fully extended and then three dynamic trials at each of three loads equal to 75, 50, and 25 per cent of the maximal isometric strength. Angular acceleration was used to calculate forearm torque, and power was obtained by taking the product of torque and angular velocity. Power was found to be a cubic function of time and a fourth-order polynomial function of angular displacement reaching a peak early in the movement. The 50 per cent load resulted in a higher peak level of power than either the 25 or 75 per cent loads.  相似文献   

5.
The biceps brachii is a bi-articular muscle affecting motion at the shoulder and elbow. While its' action at the elbow is well documented, its role in shoulder elevation is less clear. Therefore, the purpose of this project was to investigate the influence of shoulder and elbow joint angles on the shoulder elevation function of the biceps brachii. Twelve males and 18 females were tested on a Biodex dynamometer with the biceps brachii muscle selectively stimulated at a standardized level of voltage. The results indicated that both shoulder and elbow joint angles influence the shoulder joint elevation moment produced by the biceps brachii. Further analysis revealed that the elevation moment was greatest with the shoulder joint at 0 degrees and the elbow flexed 30 degrees or less. The greatest reduction in the elevation moment occurred between shoulder angles of 0 degrees and 30 degrees . The shoulder elevation moment was near zero when shoulder elevation reached or exceeded 60 degrees regardless of elbow angle. These results clarify the role of the biceps in shoulder elevation, as a dynamic stabilizer, and suggest that it is a decelerator of the arm during the throwing motion.  相似文献   

6.
The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.  相似文献   

7.
A simple upper limb control strategy to guide reaching in preparation to grasp for tetraplegic subjects is proposed. The control is based on new studies of self-paced human arm movements involving rotations about the shoulder and elbow joints. An experimental study of reaching, while grasping, by able-bodied humans, allowed us to reduce the dimensionality of the control vector from two to a single variable. This was accomplished by detailed analysis of the synergy between shoulder and elbow joint angles. This study examined only movements in teh horizontal plane. In the experiments we varied: (a) the shape of targets; (b) their position relative to the initial position of the hand; and (c) the speed of reaching. A synergy between shoulder and elbow joint angles was found in most analysed movements, and it was characterized by a scaling parameter between elbow and shoulder angular velocities. The scaling parameter was determined from the target position presented in the visual perceptive field and initial shoulder and elbow angles. The same experimental setup in studies with tetraplegics with retained shoulder movements showed that this natural synergism is preserved even though the motor and sensory components of the upper limb are reduced or absent. Tetraplegics originally showed a very different reaching pattern, but after short training sessions they developed a reaching behaviour which was similar to able-bodied subjects. The results presented can be used in the following way: a tetraplegic subject lacking elbow extension and flexion may be fitted with an assistive system which will be volitionally controlled only from ipsilateral shoulder movements. The assistive system can comprise either a motorized brace, or a functional electrical stimulation system applied to elbow flexors and extensors. With this system volitional movements at the shoulder would bring the hand into the correct position to accomplish an assisted grasping motion.  相似文献   

8.
Shoulder muscle function has been documented based on muscle moment arms, lines of action and muscle contributions to contact force at the glenohumeral joint. At present, however, the contributions of individual muscles to shoulder joint motion have not been investigated, and the effects of shoulder and elbow joint position on shoulder muscle function are not well understood. The aims of this study were to compute the contributions of individual muscles to motion of the glenohumeral joint during abduction, and to examine the effect of elbow flexion on shoulder muscle function. A three-dimensional musculoskeletal model of the upper limb was used to determine the contributions of 18 major muscles and muscle sub-regions of the shoulder to glenohumeral joint motion during abduction. Muscle function was found to depend strongly on both shoulder and elbow joint positions. When the elbow was extended, the middle and anterior deltoid and supraspinatus were the greatest contributors to angular acceleration of the shoulder in abduction. In contrast, when the elbow was flexed at 90°, the anterior deltoid and subscapularis were the greatest contributors to joint angular acceleration in abduction. This dependence of shoulder muscle function on elbow joint position is explained by the existence of dynamic coupling in multi-joint musculoskeletal systems. The extent to which dynamic coupling affects shoulder muscle function, and therefore movement control, is determined by the structure of the inverse mass matrix, which depends on the configuration of the joints. The data provided may assist in the diagnosis of abnormal shoulder function, for example, due to muscle paralysis or in the case of full-thickness rotator cuff tears.  相似文献   

9.
Risk factors in throwing factors associated to little league elbow have not been adequately explored. Whether these factors also affect the players' performance is also important to elucidate while modifying throwing pattern to reduce injury. The purpose of this study was to compare the differences in throwing kinematics between youth baseball players with or without a history of medial elbow pain (MEP) and to determine the relationship between their throwing kinematics and ball speed. Fifteen players with previous MEP were matched with 15 healthy players by age, height and weight. Throwing kinematics was recorded by an electromagnetic motion analysis system. A foot switch was used for determining foot off and foot contact. Ball speed was recorded with a sports radar gun. The group with a history of MEP demonstrated less elbow flexion angle at maximum shoulder external rotation and had more lateral trunk tilt at ball release compared to the healthy group. The group with a history of MEP also had faster maximum upper torso rotation velocities, maximum pelvis rotation velocities and ball speeds. Maximum shoulder external rotation angle (r = 0.458, P = 0.011), elbow flexion angle at maximum shoulder external rotation (r = -0.637, P = 0.0003), and maximum upper torso rotation velocity (r = 0.562, P = 0.002) had significant correlation with ball speed. Findings of this study can be treated as elbow injury-related factors that clinicians and coaches can attend to when taking care of youth  相似文献   

10.
The ability to develop high levels of muscular power is considered a fundamental component for many different sporting activities; however, the load that elicits peak power still remains controversial. The primary aim of this study was to determine at which load peak power output occurs during the midthigh clean pull. Sixteen participants (age 21.5 ± 2.4 years; height 173.86 ± 7.98 cm; body mass 70.85 ± 11.67 kg) performed midthigh clean pulls at intensities of 40, 60, 80, 100, 120, and 140% of 1 repetition maximum (1RM) power clean in a randomized and balanced order using a force plate and linear position transducer to assess velocity, displacement, peak power, peak force (Fz), impulse, and rate of force development (RFD). Significantly greater Fz occurred at a load of 140% (2,778.65 ± 151.58 N, p < 0.001), impulse within 100, 200, and 300 milliseconds at a load of 140% 1RM (196.85 ± 76.56, 415.75 ± 157.56, and 647.86 ± 252.43 N·s, p < 0.023, respectively), RFD at a load of 120% (26,224.23 ± 2,461.61 N·s, p = 0.004), whereas peak velocity (1.693 ± 0.042 m·s, p < 0.001) and peak power (3,712.82 ± 254.38 W, p < 0.001) occurred at 40% 1RM. Greatest total impulse (1,129.86 ± 534.86 N·s) was achieved at 140% 1RM, which was significantly greater (p < 0.03) than at all loads except the 120% 1RM condition. Results indicate that increased loading results in significant (p < 0.001) decreases in peak power and peak velocity during the midthigh clean pull. Moreover, if maximizing force production is the goal, then training at a higher load may be advantageous, with peak Fz occurring at 140% 1RM.  相似文献   

11.
The efficient coordination of agonist and antagonist muscles is one of the important early adaptations in resistance training responsible for large increases in strength. Weak antagonist muscles may limit speed of movement; consequently, strengthening them leads to an increase in agonist muscle movement speed. However, the effect of combining agonist and antagonist muscle exercises into a power training session has been largely unexplored. The purpose of this study was to determine if a training complex consisting of contrasting agonist and antagonist muscle exercises would result in an acute increase in power output in the agonist power exercise. Twenty-four college-aged rugby league players who were experienced in combined strength and power training served as subjects for this study. They were equally assigned to an experimental (Antag) or control (Con) group and were no different in age, height, body mass, strength, or maximal power. Power output was assessed during bench press throws with a 40-kg resistance (BT P40) with the Plyometric Power System training device. After warming up, the Con group performed the BT P40 tests 3 minutes apart to determine if any acute augmentation to power output could occur without intervention. The Antag group also performed the BT P40 tests; however, an intervention strategy of a set of bench pulls, which is an antagonistic action to the bench throw, was performed between tests to determine if this would acutely affect power output during the second BT P40 test. Although the power output for the Con group remained unaltered between test occasions, the significant 4.7% increase for the Antag group indicates that a strategy of alternating agonist and antagonist muscle exercises may acutely increase power output during complex power training. This result may affect power training and specific warm-up strategies used in ballistic sports activities, with increased emphasis placed upon the antagonist muscle groups.  相似文献   

12.
李愉 《人类学学报》1985,4(4):333-344
本文应用北京、四川两地工人的人体测量数据,得到一个适应国人体质的汽车驾驶室工作空间配置方式。以肌电图和男性腰背形状分析为依据,文章对座椅靠背的形状也提出建议。与一机部部标准比较,本文结果在国内有更高的适用比例。  相似文献   

13.
In this paper, we measured the maximum isometric force at the hand in eight directions in the horizontal plane and at five positions in the workplace. These endpoint forces were the result of shoulder horizontal adduction/abduction and elbow flexion/extension torques. We found that the normalized maximum forces of all the six subjects deviated less than 15%, despite intra-subject differences in muscle strength of more than a factor of two. The maximum forces were found to systematically depend on the force direction and on the hand position in the workspace. The largest forces were found in a direction approximately along the line connecting shoulder joint and hand, and the smallest forces perpendicular to that line, thereby forming an elliptically shaped pattern. The elongation of the pattern was the largest for those hand positions having the more extended elbow joint. By using a lumped six-muscle model, with two mono-articular muscle pairs and one bi-articular pair, we were able to predict the observed force patterns. Here, we assumed that one of the muscles generates its maximum force and the others adjust their output to point the endpoint force in the required direction. We used a principal component analysis of the surface EMGs of simultaneously measured representatives of four of the six muscles. With the same model, we were then able to determine the principal directions of all the six muscle groups.  相似文献   

14.
The purpose of the current study was to investigate the effect of 10 weeks of strength training on the flexibility of sedentary middle-aged women. Twenty women were randomly assigned to either a strength training group (n = 10; age, 37 +/- 1.7 years; body mass, 65.2 +/- 10.7 kg; height, 157.7 +/- 10.8 cm; and body mass index, 25.72 +/- 3.3 kg x m(-2)) or a control group (n = 10; age, 36.9 +/- 1.2 years; body mass, 64.54 +/- 10.18 kg; height, 158.1 +/- 8.9 cm; and body mass index, 26.07 +/- 2.8 kg x m(-2)). The strength training program was a total body session performed in a circuit fashion and consisted of 7 exercises performed for 3 circuits of 8 to 12 repetitions maximum (RM), except for the abdominal exercise which was performed for 15 to 20 RM. Flexibility measurements were taken for 10 articulation movements pre and post training: shoulder flexion and extension, shoulder horizontal adduction and abduction, elbow flexion, hip flexion and extension, knee flexion, and trunk flexion and extension. Pre and post training, 10 RM strength significantly increased (p < 0.05). Of the movements examined, only shoulder horizontal adduction, hip flexion and extension, and trunk flexion and extension demonstrated significant increases (p < 0.05). Neither elbow nor knee flexion showed a significant change with weight training. The control group showed no significant change in any of the flexibility measures determined. In conclusion, weight training can increase flexibility in previously sedentary middle-aged women in some, but not all joint movements.  相似文献   

15.
Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p < 0.05), and the OKCRT group improved 0.3 mph (0.5%, NS). A significant interaction was observed (p < 0.05). The CKCRT group improved its 1RM bench press to the same degree (1.9 kg) as the OKCRT group (p < 0.05 within each group). The CKCRT group improved all measures of shoulder strength and power, whereas OKCRT conferred little change in shoulder torque and power scores. Although throwing is an open-chain movement, adaptations from CKCRT may confer benefits to subsequent performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.  相似文献   

16.
This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.  相似文献   

17.
Since the establishment of the obstetrical brachial plexus clinic in Saudi Arabia, the author has designed a prospective study in which the indication for brachial plexus surgery in infants with Erb's palsy was the lack of active elbow flexion against gravity at 4 months of age. Forty-three infants were included in the study and were distributed among four groups: group A (n = 20) included infants who had active elbow flexion at the initial assessment or at 2 months of age; group B (n = 9) included infants who had active elbow flexion at 3 months of age; group C (n = 11) included infants who had active elbow flexion at 4 months of age; and group D (n = 3) included infants who did not have active elbow flexion at 4 months of age. At the final follow-up, all children in group A demonstrated complete spontaneous recovery of the motor power of the limb. All children in group B also had satisfactory spontaneous recoveries, and none required secondary corrective procedures. Five of the 11 patients in group C had satisfactory spontaneous recoveries. The remaining six children in group C had good recovery of elbow flexion but a poor recovers of shoulder function. Finally, all three patients who did not have elbow flexion at 4 months of age (group D) underwent surgical exploration and reconstruction of the brachial plexus, using nerve grafts. The results of this prospective study are discussed, along with the controversial issue regarding the timing of primary plexus surgery in Erb's palsy.  相似文献   

18.
This study investigated how position in the range of motion influences the power spectral density function during static shoulder forward flexion. 23 healthy females (20-30 years) volunteered as subjects. They performed maximum static shoulder forward flexions in three positions: 45, 65 and 90 degrees of shoulder flexion. An isokinetic dynamometer was used and the subjects were seated in a specially constructed chair to enable adequate fixation. The elbow was extended and the hand pronated. Electromyographic (EMG) signals (using surface electrodes) were obtained from the descending part of the right trapezius, the anterior portion of the right deltoid, the right infraspinatus and the common belly of the right biceps brachii. The four EMG-signals and the torque and shoulder angle were analyzed by computer. For each 256 ms, mean power frequency, root mean square value and mean torque were calculated. At each of the three positions four 256 ms periods were analyzed and the data are presented as their means. In the trapezius and the biceps brachii the mean power frequency did not change between the three positions. Deltoid and infraspinatus had significantly higher mean power frequencies at 90 degrees than at 45 degrees of flexion. Different factors behind the change in mean power frequency are discussed. The need to standardize the range of motion when studying dynamic fatiguing contractions is emphasised.  相似文献   

19.
Changes in neuromuscular strategies employed with fatigue during multi-joint movements are still poorly understood. Studies have shown that motor variability of individual joints increases when performing upper limb tasks to fatigue, while movement parameters related to the task goal remain constant. However, how the inter-limb coordination and its variability change during specific movement phases with fatigue is still unclear. The aim of this study was to assess the effects of neck-shoulder fatigue on shoulder and elbow kinematic variabilities, shoulder-elbow coordination and its variability, and endpoint characteristics during different phases of a forward pointing movement. Nineteen healthy young adults continuously performed a repetitive pointing task until fatigue (Borg rating of 8/10). Changes in elbow-shoulder coordination through the movement were assessed using the continuous relative phase and statistical nonparametric mapping methods. At the end of the task, muscle fatigue was evidenced by significant increases in anterior deltoid (+13%) and biceps brachii (+30%) activity. Shoulder horizontal abduction, elbow flexion variability and shoulder-elbow coordination variability were increased with fatigue at different moments of the movement cycle (shoulder: during the first 17% and most of the second half movement, elbow: from 73% to 91%, coordination: almost the whole movement). However, movement timing errors and endpoint spatial variability were mostly preserved, even with fatigue. We showed that increased variability with fatigue is not only observed in the fatigued joint (shoulder), but also in the elbow and shoulder-elbow coordination, and may have a goal of preserving global task performance.  相似文献   

20.
Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32–135% MVC); upper trapezius and middle deltoid while exerting upwards (73–103% and 42–78% MVC, respectively); infraspinatus while pushing (38–79% MVC); and pectoralis major activation was the highest during downwards exertions (48–84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号