首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the tumor necrosis factor receptor (TNFR) family play a variety of roles in the regulation of lymphocyte activation. An important TNFR family member for B cell activation is CD40. CD40 signals stimulate B cell TNF-alpha secretion, which subsequently signals via TNFR2 (CD120b) to enhance B cell activation. Although the function of the pro-apoptotic and pro-inflammatory receptor TNFR1 (CD120a) has been the subject of much research, less is understood about the distinct contributions of CD120b to cell activation and how it stimulates downstream events. Members of the tumor necrosis factor receptor family bind various members of the cytoplasmic adapter protein family, the tumor necrosis factor receptor-associated factors (TRAFs), during signaling. Both CD40 and CD120b bind TNF receptor-associated factor 2 (TRAF2) upon ligand stimulation. Wild type and TRAF2-deficient B cells expressing CD40 or the hybrid molecule (human) CD40 (mouse)-CD120b were examined. CD40- and CD120b-mediated IgM secretion were partly TRAF2-dependent, but only CD40 required TRAF2 for c-Jun N-terminal kinase activation. CD40 and CD120b used primarily divergent mechanisms to activate NF-kappaB, exemplifying how TNFR family members can use diverse mechanisms to mediate similar downstream events.  相似文献   

2.
Optimal Ag-specific B lymphocyte activation requires both recognition of Ag by the B cell Ag receptor (BCR) and contact-mediated interactions with Ag-specific Th lymphocytes. One of these interactions involves ligation of B cell CD40 by T cell-expressed CD154. CD40 signaling is crucial for Ab production, isotype switching, up-regulation of surface molecules, development of germinal centers, and the humoral memory response. The signaling pathways emanating from the BCR and CD40 are able to cooperate, but the molecular mechanisms responsible for this interaction are incompletely understood. The present study explored the roles of signaling motifs in the CD40 cytoplasmic tail in this synergy. We find that threonine in the PXQXT motif in the TNFR-associated factor-2 binding site is critical for synergistic effects of CD40 and BCR signals, independent of its phosphorylation. Furthermore, data suggest an indirect role for TNFR-associated factor-2 in the cooperative signaling.  相似文献   

3.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

4.
5.
6.
Engagement of CD40 on murine B cells by its ligand CD154 induces the binding of TNFR-associated factors (TRAFs) 1, 2, 3, and 6, followed by the rapid degradation of TRAFs 2 and 3. TRAF degradation occurs in response to signaling by other TNFR superfamily members, and is likely to be a normal regulatory component of signaling by this receptor family. In this study, we found that receptor-induced TRAF degradation limits TRAF2-dependent CD40 signals to murine B cells. However, TRAFs 1 and 6 are not degraded in response to CD40 engagement, despite their association with CD40. To better understand the mechanisms underlying differential TRAF degradation, mixed protein domain TRAF chimeras were analyzed in murine B cells. Chimeras containing the TRAF2 zinc (Zn) domains induced effective degradation, if attached to a TRAF domain that binds to the PXQXT motif of CD40. However, the Zn domains of TRAF3 and TRAF6 could not induce degradation in response to CD40, regardless of the TRAF domains to which they were attached. Our data indicate that TRAF2 serves as the master regulator of TRAF degradation in response to CD40 signaling, and this function is dependent upon both the TRAF Zn domains and receptor binding position.  相似文献   

7.
Signals delivered to antigen-presenting cells through CD40 are critical for the activation of immune responses. Intracellular tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are key elements of the signal transduction pathways of many TNF receptor family members, including CD40. We show for the first time that engagement of CD40 in intact B cells induces the rapid translocation of TRAF2 from the cytoplasm to the plasma membrane. We found that CD40 engagement also results in its recruitment, together with TRAF2 and TRAF3, to membrane microdomains, regions of the plasma membrane enriched in signaling molecules such as the Src family kinases. Using a membrane-permeable chelator of zinc or a mutant TRAF2 molecule, we show that the putative zinc-binding domains of TRAFs contribute to their recruitment to microdomains and to the downstream activation of c-Jun N-terminal kinase. We suggest that the zinc RING and zinc finger domains of TRAFs are required for communication between CD40 and microdomain-associated signaling molecules and may serve a similar role in the signal transduction pathways of other TNF receptor family members.  相似文献   

8.
9.
10.
Lymphotoxin-beta receptor (LTbetaR) and CD40 are members of the tumor necrosis factor family of signaling receptors that regulate cell survival or death through activation of NF-kappaB. These receptors transmit signals through downstream adaptor proteins called tumor necrosis factor receptor-associated factors (TRAFs). In this study, the crystal structure of a region of the cytoplasmic domain of LTbetaR bound to TRAF3 has revealed an unexpected new recognition motif, 388IPEEGD393, for TRAF3 binding. Although this motif is distinct in sequence and structure from the PVQET motif in CD40 and PIQCT in the regulator TRAF-associated NF-kappaB activator (TANK), recognition is mediated in the same binding crevice on the surface of TRAF3. The results reveal structurally adaptive "hot spots" in the TRAF3-binding crevice that promote molecular interactions driving specific signaling after contact with LTbetaR, CD40, or the downstream regulator TANK.  相似文献   

11.
Lee H  Choi JK  Li M  Kaye K  Kieff E  Jung JU 《Journal of virology》1999,73(5):3913-3919
The STP oncoproteins of the herpesvirus saimiri (HVS) subgroup A strain 11 and subgroup C strain 488 are now found to be stably associated with tumor necrosis factor receptor-associated factor (TRAF) 1, 2, or 3. Mutational analyses identified residues of PXQXT/S in STP-A11 as critical for TRAF association. In addition, a somewhat divergent region of STP-C488 is critical for TRAF association. Mutational analysis also revealed that STP-C488 induced NF-kappaB activation that was correlated with its ability to associate with TRAFs. The HVS STP-C488 P10-->R mutant was deficient in human T-lymphocyte transformation to interleukin-2-independent growth but showed wild-type phenotype for marmoset T-lymphocyte transformation in vitro and in vivo. The STP-C488 P10-->R mutant was also defective in Rat-1 fibroblast transformation, and fibroblast cell transformation was blocked by a TRAF2 dominant-negative mutant. These data implicate TRAFs in STP-C488-mediated transformation of human lymphocytes and rodent fibroblasts. Other factors are implicated in immortalization of common marmoset T lymphocytes and may also be critical in the transformation of human lymphocytes and rodent fibroblasts.  相似文献   

12.
13.
Signaling through CD40 in B cells leads to B cell proliferation, Ig and IL-6 secretion, isotype switching, and up-regulation of surface molecules. TNF receptor-associated factor (TRAF) proteins associate with the cytoplasmic tail of CD40 and act as adapter molecules. Of the six TRAFs identified to date, TRAFs 2, 3, 5, and 6 are reported to associate directly with the cytoplasmic tail of CD40, but previous studies have principally examined transient overexpression of TRAF6 in cells that do not normally express CD40. Thus, we examined the role of TRAF6 in CD40-mediated B lymphocyte effector functions using two approaches. We produced and stably expressed in mouse B cell lines a human CD40 molecule with two cytoplasmic domain point mutations (hCD40EEAA); this mutant fails to bind TRAF6, while showing normal association with TRAFs 2 and 3. We also inducibly expressed in B cells a transfected "dominant-negative" TRAF6 molecule which contains only the C-terminal TRAF-binding domain of TRAF6. Using both molecules, we found that TRAF6 association with CD40 is important for CD40-induced IL-6 and Ig secretion, and that TRAF6 mediates its effects on CD40-stimulated Ig secretion principally through its effects on IL-6 production by the B cell. TRAF6 association with CD40 was also found to be important for B7-1 up-regulation, but not for up-regulation of other surface molecules. Interestingly, however, although we could show TRAF6-dependent CD40-mediated activation of NF-kappaB in 293 kidney epithelial cells, no such effect was seen in B cells, suggesting that TRAF6 has cell-type-specific functions.  相似文献   

14.
Signaling by some TNF receptor family members, including CD40, is mediated by TNF receptor-associated factors (TRAFs) that interact with receptor cytoplasmic domains following ligand-induced receptor oligomerization. Here we have defined the oligomeric structure of recombinant TRAF domains that directly interact with CD40 and quantitated the affinities of TRAF2 and TRAF3 for CD40. Biochemical and biophysical analyses demonstrated that TRAF domains of TRAF1, TRAF2, TRAF3, and TRAF6 formed homo-trimers in solution. N-terminal deletions of TRAF2 and TRAF3 defined minimal amino acid sequences necessary for trimer formation and indicated that the coiled coil TRAF-N region is required for trimerization. Consistent with the idea that TRAF trimerization is required for high-affinity interactions with CD40, monomeric TRAF-C domains bound to CD40 significantly weaker than trimeric TRAFs. In surface plasmon resonance studies, a hierarchy of affinity of trimeric TRAFs for trimeric CD40 was found to be TRAF2 > TRAF3 > TRAF1 and TRAF6. CD40 trimerization was demonstrated to be sufficient for optimal NF-kappaB and p38 mitogen activated protein kinase activation through wild-type CD40. In contrast, a higher degree of CD40 multimerization was necessary for maximal signaling in a cell line expressing a mutated CD40 (T254A) that signaled only through TRAF6. The affinities of TRAF proteins for oligomerized receptors as well as different requirements for degree of receptor multimerization appear to contribute to the selectivity of TRAF recruitment to receptor cytoplasmic domains.  相似文献   

15.
CD27 is a dimeric membrane glycoprotein found on the surface of most human T lymphocytes. Activation of T cells by engagement of the Ag receptor increases CD27 surface expression, and anti-CD27 antibodies augment Ag receptor-mediated T cell proliferation. In this study a cDNA-encoding CD27 was isolated by expression and immunoselection in COS cells. The predicted polypeptide was found to belong to a recently characterized family of cysteine-rich receptors whose known ligands include nerve growth factor and TNF-alpha and -beta. Structural similarities suggest that CD27 belongs to a lymphocyte-specific subgroup of the family, comprised of the B cell Ag CD40, the rat T cell subset Ag OX40, and the mouse T cell activation Ag 4-1BB. Recent studies suggest some of these molecules may play a role in the survival of activated cells.  相似文献   

16.
Tumor necrosis factor receptor-associated factors (TRAFs) associate with the CD40 cytoplasmic domain and initiate signaling after CD40 receptor multimerization by its ligand. We used saturating peptide-based mutational analyses of the TRAF1/TRAF2/TRAF3 and TRAF6 binding sequences in CD40 to finely map residues involved in CD40-TRAF interactions. The core binding site for TRAF1, TRAF2, and TRAF3 in CD40 could be minimally substituted. The TRAF6 binding site demonstrated more amino acid sequence flexibility and could be optimized. Point mutations that eliminated or enhanced binding of TRAFs to one or both sites were made in CD40 and tested in quantitative CD40-TRAF binding assays. Sequences flanking the core TRAF binding sites were found to modulate TRAF binding, and the two TRAF binding sites were not independent. Cloned stable transfectants of human embryonic kidney 293 cells that expressed wild type CD40 or individual CD40 mutations were used to demonstrate that both TRAF binding sites were required for optimal NF-kappaB and c-Jun N-terminal kinase activation. In contrast, p38 mitogen-activated protein kinase activation was primarily dependent upon TRAF6 binding. These studies suggest a role in CD40 signaling for competitive TRAF binding and imply that CD40 responses reflect an integration of signals from individual TRAFs.  相似文献   

17.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

18.
19.
Cross-communication between different signaling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. In this paper we have explored the possibility that tumor necrosis factor (TNF) receptor signal cross-talks with epidermal growth factor (EGF) receptor signal on the nuclear factor-kappa B (NF-kappa B) activation pathway. We have demonstrated that overexpression of the EGF receptor (EGFR) in NIH3T3 cells significantly enhances TNF-induced NF-kappa B-dependent luciferase activity even without EGF, that EGF treatment has a synergistic effect on the induction of the reporter activity, and that this enhancement is suppressed by AG1478, EGFR-specific tyrosine kinase inhibitor. We also have shown that TNF induces tyrosine phosphorylation and internalization of the overexpressed EGFR in NIH3T3 cells and the endogenously expressed EGFR in A431 cells and that the transactivation by TNF is suppressed by N-acetyl-l-cysteine or overexpression of an endogenous reducing molecule, thioredoxin, but not by phosphatidylinositol 3-kinase inhibitors and protein kinase C inhibitor. Taken together, this evidence strongly suggests that EGFR transactivation by TNF, which is regulated in a redox-dependent manner, is playing a pivotal role in TNF-induced NF-kappa B activation.  相似文献   

20.
Cell surface molecules on lymphocytes positively or negatively modulate the Ag receptor signaling, and thus regulate the fate of the cell. CD22 is a B cell-specific cell surface protein that contains multiple ITIMs in the cytoplasmic tail, and critically regulates B cell activation and survival. CD22 regulation on B cell signaling is complex because CD22 can have both positive and negative roles in various contexts. We generated phosphospecific polyclonal Abs reacting four major CD22 tyrosine motifs (Y762, Y807, Y822, and Y842) and analyzed the pattern and intensity of phosphorylation of these tyrosine residues. The tyrosine motifs, Y762, Y822, and Y842, are considered as ITIM, whereas the other, Y807, is suggested to be important for Grb2 recruitment. Approximately 10% of the four tyrosine residues were constitutively phosphorylated. Upon anti-IgM ligation, CD22 Y762 underwent most rapid phosphorylation, whereas all four tyrosine residues were eventually phosphorylated equally at approximately 35% of all CD22 molecules in the cell. By contrast, anti-CD40 stimulation specifically up-regulated anti-IgM-induced phosphorylation of tyrosines within two ITIM motifs, Y762 and Y842, which was consistent with in vivo finding of the negative role of CD22 in CD40 signaling. Thus, CD22 phosphorylation is not only quantitatively but also qualitatively regulated by different stimulations, which may determine the outcome of B cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号