首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate metabolism of barley (Hordeum vulgare) leaves induced to accumulate sucrose (Suc) and fructans was investigated at the single-cell level using single-cell sampling and analysis. Cooling of the root and shoot apical meristem of barley plants led to the accumulation of Suc and fructan in leaf tissue. Suc and fructan accumulated in both mesophyll and parenchymatous bundle-sheath (PBS) cells because of the reduced export of sugars from leaves under cooling and to increased photosynthesis under high photon fluence rates. The general trends of Suc and fructan accumulation were similar for mesophyll and PBS cells. The fructan-to-Suc ratio was higher for PBS cells than for mesophyll cells, suggesting that the threshold Suc concentration needed for the initiation of fructan synthesis was lower for PBS cells. Epidermal cells contained very low concentrations of sugar throughout the cooling experiment. The difference in Suc concentration between control and treated plants was much less if compared at the single-cell level rather than the whole-tissue level, suggesting that the vascular tissue contains a significant proportion of total leaf Suc. We discuss the importance of analyzing complex tissues at the resolution of individual cells to assign molecular mechanisms to phenomena observed at the whole-plant level.  相似文献   

2.
Koroleva OA  Tomos AD  Farrar J  Pollock CJ 《Planta》2002,215(2):210-219
Pressure-probe measurements and single-cell sampling and analysis techniques were used to determine the effect of photosynthetic production and accumulation of sugars on osmotic and turgor pressures of individual cells of barley ( Hordeum vulgare L.) source leaves. In control plants, the changes in osmotic pressure in individual cells during the photoperiod were different for mesophyll (increase of 276 mOsmol/kg), parenchymatous bundle sheath (PBS; increase of 100 mOsmol/kg) and epidermis (remains constant). There was also an increase in osmotic pressure at the tissue level. Cooling of roots and the shoot apical meristem restricted the export of sugars from leaves, and the resulting changes in osmotic and turgor pressure were monitored. In contrast to the control leaves, mesophyll, PBS, and epidermal cells showed a similar increase in osmotic pressure (up to 500 mOsmol/kg). Cooling also increased the turgor pressure in epidermal and (to a greater extent) PBS cells. The difference in turgor pressure between epidermal and PBS cells is consistent with the presence of a water potential gradient within the leaf, from the vascular bundles towards the leaf surface.  相似文献   

3.
4.
The distribution and fluctuation of sugars in germinating barley seeds were examined by 13C nuclear magnetic resonance (NMR) spectroscopy, 1H-NMR imaging and 1H-NMR localized spectroscopy in relation to morphology. Maltose, sucrose, fructose and oils were detected in intact imbibed seeds by 13C-NMR spectra. During the first 6 d of germination, the maltose content increased and the oil content gradually decreased, whilst the levels of sucrose and fructose remained constant. Sugars were located by 1H-NMR images and 1H-NMR localized spectra in the vascular bundle of the seeds as well as in the solubilized endosperm. They were also detected in the shoots. The sugars detected in an 80% ethanol shoot extract were sucrose and glucose, which were located in the vascular bundles but not in the mesophyll cells of the coleoptile. They were also located in the basal part of the shoot, but not above 7 mm from the scutellum. The data suggest that the sugars are primarily transported through the vascular bundles and, at the same time, rapidly incorporated into mesophyll cells in the leaves.  相似文献   

5.
The distribution of solutes between epidermal, mesophyll and bundle-sheath cells in barley (Hordeum vulgare L. cv. Klaxon) leaves was studied by analysing extracts obtained from single cells with a modified pressure probe. Activity of the cytoplasmic marker enzyme, malate dehydrogenase, revealed that epidermal cell extracts were completely vacuolar in origin, but extracts from mesophyll cells also contained cytoplasmic constituents. The extracts were analysed for osmolality and the concentrations of K, Na, Ca, Cl, P, S, NO 3 , sugars and total amino acids. Epidermal and mesophyll cell extracts had similar osmolalities but these varied between 420 and 565 mosmol, kg 1 depending on the leaf developmental stage; the osmolality of bundle-sheath extracts was approximately 100 mosmol, kg–1 lower. Under the growth conditions used, K and NO 3 were found in all three cell types and their concentrations generally ranged between 180 and 230 mM. In contrast, Ca was almost restricted to epidermal cells, where it increased to 70 mM during leaf ageing. Phosphorus was only detectable ( 5 mM) in extracts from mesophyll and bundle-sheath cells, while Cl concentrations were highest in epidermal and lowest in mesophyll cell extracts. The concentrations of sugars and amino acids were close to the detection limit (approx. 2 mM) in epidermal cells but mesophyll cells contained total sugar (glucose, fructose and sucrose) of up to 78 mM and total amino-acid concentrations of up to 13.5 mM. Concentrations in bundle-sheath cells were intermediate between those in the epidermis and mesophyll.Abbreviations EDX analysis energy dispersive X-ray analysis - MDH malate dehydrogenase We wish to thank Paul Richardson, Jeremy Pritchard, Peter Hinde and Andrew Davies (Banger) for their helpfull discussion and technical advice. This work was financed by a grant (LR5/521) from the Agricultural and Food Research Council.  相似文献   

6.
Dactylis glomerata (orchardgrass) accumulates a single series of levans and the high DP polymers might be correlated with an increased stress resistance. A single levan series could be induced in excised orchardgrass leaves, without any 1 -kestose accumulation, strongly suggesting that fructan synthesis occurs independently of 1-SST activity. This elegant excised leaf system was used to study fructan metabolism regulation as affected by environmental conditions and exogenous sugar treatments. In contrast to the well-studied barley excised leaf system, fructan biosynthesis could not be rapidly induced in the light without exogenous sugar and only a limited fructan synthesis was observed in the dark with sugar. It can be concluded that both light and sugar are needed to achieve an optimal fructan synthesis. To induce fructan biosynthesis, sucrose could be replaced by a combination of glucose and fructose. Fructans were found to be a surplus pool of sucrose when a threshold sucrose concentration is surpassed. A metabolic switch to fructan degradation was observed when induced orchardgrass leaves were incubated in the dark at 30°C. Interestingly, fructans persisted during senescence of sugar-induced orchardgrass leaves. On the longer term, these fundamental regulatory insights might help to create superior grasses for future feed and/or biomass production.  相似文献   

7.
There are a variety of methods for characterising gene expression at the level of individual cells and for demonstrating that the cells also contain the encoded proteins. However, measuring the activity of enzymes at the resolution of single cells in complex tissues, such as leaves, is problematic. We have addressed this by using single-cell sampling to extract 10-100 pl droplets of sap from individual plant cells and then measuring enzyme activities in these droplets with nanolitre-scale fluorescence-based assays. We have optimised these assays and used them to measure and characterise the activities of acid phosphatase, cysteine protease and nitrate reductase in sap samples from epidermal and mesophyll cells of barley (Hordeum vulgare L.) and Arabidopsis thaliana leaves exposed to different developmental and environmental conditions. During leaf senescence in barley, we found that the dynamics with which acid phosphatase and protease activities changed were different in each cell type and did not mirror the changes occurring at the whole-leaf level. Increases in nitrate reductase activities after exposure of barley plants to nitrate were large in mesophyll cells but small in epidermal cells. The technique was applied successfully to Arabidopsis and, as in barley, revealed cell-specific differences in the activities of both acid phosphatase and nitrate reductase. The assays add to the spectrum of techniques available for characterising cells within complex plant tissues, thus extending the opportunity to relate gene expression to biochemical activities at the single-cell level.  相似文献   

8.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

9.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

10.
We have recently cloned a cDNA encoding sucrose:fructan 6-fructosyltransferase (6-SFT), a key enzyme of fructan synthesis forming the β-2,6 linkages typical of the grass fructans, graminans and phleins [Sprenger et al. (1995) Proc. Natl. Acad. Sci. USA 92, 11652–11656]. Here we report functional expression of 6-SFT from barley in transgenic tobacco and chicory. Transformants of tobacco, a plant naturally unable to form fructans, synthesized the trisaccharide kestose and a series of unbranched fructans of the phlein type (β-2,6 linkages). Transformants of chicory, a plant naturally producing only unbranched fructans of the inulin type (β-2,1 linkages), synthesized in addition branched fructans of the graminan type, particularly the tetrasaccharide bifurcose which is also a main fructan in barley leaves.  相似文献   

11.
Excised leaves of barley (Hordeum vulgare L.) exposed to continuous light accumulate large amounts of soluble carbohydrates. Carbohydrates were analyzed in deionized extracts by high-pressure liquid chromatography on an anion exchange column coupled with pulsed amperometric detection. During the first few hours of illumination, the main sugar to accumulate was sucrose. The levels of glucose and fructans (oligofructosylsucroses) increased later. The trisaccharide 1-kestose (1-kestotriose) predominated initially among the fructans. Later, 6-kestose (6-kestotriose) and tetra- and pentasaccharides accumulated also. Total extracts from barley leaves were chromatographed on a MonoQ column, and each fraction was assayed for enzymes of interest by incubation with 200 mM sucrose for 3 h, followed by carbohydrate analysis. Freshly excised leaves yielded two peaks of invertase, characterized by formation of fructose and glucose, but had almost no trisaccharide-forming activities. In leaves exposed to continuous light, two new enzyme activities appeared that generated fructan-related trisaccharides and glucose from sucrose. One of them was a sucrose-sucrose fructosyl-1-transferase (1-SST), producing 1-kestose exclusively: the peak fractions of this activity contained almost no invertase. The other was a sucrose-sucrose fructosyl-6-transferase (6-SST), producing 6-kestose. It comigrated with one of the constitutive invertases on MonoQ but was separated from it by subsequent chromatography on alkyl Superose. Nevertheless, the preparation retained invertase activity, suggesting that this enzyme may act both as fructosidase and fructosyltransferase. When incubated with 1-kestose in addition to sucrose, this enzyme formed less 6-kestose but instead produced large amounts of the tetrasaccharide bifurcose (1&6-kestotetraose), the main fructan tetrasaccharide accumulating in vivo. These results suggest that two inducible enzymes, 1-SST and 6-SST, act in concert to initiate fructan accumulation in barley leaves.  相似文献   

12.
Fructan is an important class of non-structural carbohydrates present in cool-season grasses. Sucrose: fructan 6-fructosyltransferase (6-SFT, EC 2.4.1.10), one of the enzymes thought to be involved in grass fructan biosynthesis, catalyzes the initiation and extension of 2,6-linked fructans.Myo-inositol is a central component in several metabolic pathways in higher plants.Myo-inositol 1-phosphate synthase (MIPS) (EC 5.5.1.4), the first enzyme in inositolde novo biosynthesis, catalyzes the formation ofmyo-inositol 1-phosphate (MIP) from glucose-6-phosphate. The expression of 6-SFT and MIPS genes is compared in barley (Hordeum vulgare L.) leaves under various conditions. In cool temperature treatments, both 6-SFT and MIPS mRNAs accumulate within two days and then decline after four days. Under warm temperatures and continuous illumination, the amount of 6-SFT and MIPS mRNA gradually accumulated in detached leaves and increased significantly by 8 h. In contrast, we observed no significant changes over time in attached (control) leaves. Treating detached leaves with glucose or sucrose in the dark resulted in accumulations of both 6-SFT and MIPS mRNA. Homologous expression patterns for 6-SFT and MIPS genes suggest that they may be similarly regulated in barley leaves. Although sucrose and glucose may play important roles in the expression of 6-SFT and MIPS genes, regulation likely involves multiple factors.  相似文献   

13.
Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element‐companion cell complex, creates a driving force for long‐distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer‐trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. ‘mixed loading’. Here, by using a combination of electron microscopy, reverse genetics and 14C labeling, loading strategies were studied in cucumber, a polymer‐trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer‐trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14CO2 labeling, [14C]sucrose export increased and [14C]stachyose export reduced from petioles in CsGolS1i plants, but [14C]sucrose export decreased and [14C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre‐treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer‐trapping and apoplastic loading strategies.  相似文献   

14.
The incorporation of 14C into sucrose and hexose phosphates during steady-state photosynthesis was examined in intact leaves of Zea mays L. plants. The compartmentation of sucrose synthesis between the bundle sheath and mesophyll cells was determined by the rapid fractionation of the mesophyll and comparison of the labelled sucrose in this compartment with that in a complete leaf after homogenisation. From these experiments it was concluded that the majority of sucrose synthesis occurred in the mesophyll cell type (almost 100% when the time-course of sucrose synthesis was extrapolated to the time of 14C-pulsing). The distribution of enzymes involved in sucrose synthesis between the two cell types indicated that sucrose-phosphate synthetase was predominantly located in the mesophyll, as was cytosolic (neutral) fructose-1,6-bisphosphatase activity. Stromal (alkaline) fructose-1,6-bisphosphatase activity was found almost exclusively in the bundle-sheath cells. No starch was found in the mesophyll tissue. These data indicate that in Zea mays starch and sucrose synthesis are spatially, separated with sucrose synthesis occurring in the mesophyll compartment and starch synthesis in the bundle sheath.  相似文献   

15.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

16.
17.
18.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

19.
20.
Temporal and spatial patterns of palisade mesophyll cell expansion in Zinnia elegans were characterized as a basis for developing a suspension culture model for mesophyll cell expansion. Our objectives were to 1) identify the leaf regions from which cells in various stages of expansion could be selectively isolated for culture, and 2) develop a basis for comparison of rate and extent of mesophyll cell expansion in culture with that in the leaf. Palisade mesophyll cells were isolated from expanding leaves by gentle physical maceration without the use of enzymes. Isolated cells from leaves in different stages of expansion were then measured by computer image analysis. Analysis of size frequency distributions showed that unexpanded cells can be isolated from the entire blade of small leaves or the basal regions of partially expanded leaves. Fully expanded cells can be obtained from the apical and middle regions of partially expanded leaves. Within the leaf, Zinnia mesophyll cells expanded from about 400 μm2 to about 2.300 μm2 at an estimated rate of 160 μm2 d-1. The percent increase in cell length exceeded the percent increase in cell width. Expansion of mesophyll cells continued for 6–8 d after epidermal expansion ceased. This difference in the timing of cell expansion in epidermal and mesophyll cells indicates that different regulatory factors may be operating in these adjacent tissues and underscores the importance of investigating the regulation of mesophyll cell expansion at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号