首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Certain lactic acid bacteria, especially heterofermentative strains, are capable to produce mannitol under adequate culture conditions. In this study, mannitol production by Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in modified MRS medium containing a mixture of fructose and glucose in a 6.5:1.0 ratio was investigated during batch fermentations with free pH and constant pH 6.0 and 5.0. Mannitol production and yields were higher under constant pH conditions compared with fermentations with free pH, the increase being more pronounced in the case of the L. fermentum strain. Maximum mannitol production and yields from fructose for L. reuteri CRL 1101 (122 mM and 75.7 mol%, respectively) and L. fermentum CRL 573 (312 mM and 93.5 mol%, respectively) were found at pH 5.0. Interestingly, depending on the pH conditions, fructose was used only as an alternative external electron acceptor or as both electron acceptor and energy source in the case of the L. reuteri strain. In contrast, L. fermentum CRL 573 used fructose both as electron acceptor and carbon source simultaneously, independently of the pH value, which strongly affected mannitol production by this strain. Studies on the metabolism of these relevant mannitol-producing lactobacilli provide important knowledge to either produce mannitol to be used as food additive or to produce it in situ during fermented food production.  相似文献   

2.
《Process Biochemistry》2007,42(5):820-827
Six factors: strain, carbon source, nitrogen source, nitrogen concentration, aeration, and initial pH, were investigated for their effects on exopolysaccharides (EPS) production in Erlenmeyer flasks by Aureobasidium pullulans using 2-level fractional factorial design. The concentration and molecular weight (MW) of EPS were optimized simultaneously. The effects of main factors together with possible two-factor interactions were detected, and the levels of the six factors were optimized using empirical models. Analysis of factor effects revealed that strain had the strongest influence on EPS concentration, and nitrogen source on MW of EPS. However, nitrogen concentration did not show significant influence on both parameters. The influences of factors on the production variability were also monitored for quality control purposes. At the optimum levels of control factors investigated, as high as 22.6 g/L EPS with a weight average MW of higher than 2 × 106 was produced. The results of this work indicate that the production kinetics varies for different microorganism–medium–environment systems.  相似文献   

3.
During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.  相似文献   

4.
A mixed culture of sulfate-reducing bacteria containing the species Desulfovibrio desulfuricans was used to study sulfate-reduction stoichiometry and kinetics using ethanol as the carbon source. Growth yield was lower, and kinetics were slower, for ethanol compared to lactate. Ethanol was converted into acetate and no significant carbon dioxide production was observed. A mathematical model for growth of sulfate-reducing bacteria on ethanol was developed, and simulations of the growth experiments on ethanol were carried out using the model. The pH variation due to sulfate reduction, and hydrogen sulfide production and removal by nitrogen sparging, were examined. The modeling study is distinct from earlier models for systems using sulfate-reducing bacteria in that it considers growth on ethanol, and analyzes pH variations due to the product-formation reactions.  相似文献   

5.
To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture.  相似文献   

6.
Several natural associations composed of thermophilic anaerobic bacteria capable of utilizing various cellulose materials at 60 ± 2°C and pH 6.0–7.0 were isolated from the sludge of Kamchatka geothermal springs. The rate of ethanol production (up to 1.7 g/l per day) and the concentration of ethanol in the medium (up to 1.2%), as well as the fermentation period (10–15 days), were determined under anaerobic conditions in the presence of cellulose, coniferous sawdust, newsprint, or paper pulp as a carbon source. Microorganisms were found that inhibited the production of ethanol. The initial pH value was found to influence both the ethanol production rate and ethanol/acetate ratio. A pH decrease from 7.0 to 5.0 led to a 6.7-fold increase in ethanol production and caused a 23.8-fold increase in the ethanol/acetate ratio.  相似文献   

7.
Bacterial cellulose has multiple applications in various industries such as food, biomedical, textile due to its uniqueness of being a better bio-compatible coating agent, binding material, etc. In this study, optimization of the culture medium for producing BC from Leifsonia soli was carried out by selecting different parameters. Five significant factors such as maltose, pH, incubation days, soy whey and calcium chloride were estimated through ANOVA based response surface methodology. Maximum cellulose production (5.97 g/L) was obtained where maltose 1 % (w/v) supplemented with 0.8 % (v/v) soy whey and calcium chloride 0.8 % (w/v) at pH 6.5 for 7 days of incubation. In addition, assurance of cellulose production from bacteria was done by using High-performance liquid chromatography analysis. Further, the structure and purity of obtained cellulose were examined by SEM and elemental analysis where it was observed that the sample holds the value of carbon 44.1 ± 0.20 % and hydrogen 6.2 ± 0.3 %, respectively. This study concludes that the addition of maltose and soy whey could be used as carbon, nitrogen sources and calcium chloride was used as an additive for the bacterial cellulose production compared to the Hestrin Schramm medium. In addition, the calculated water holding capacity of the sample was found to be 73 %.  相似文献   

8.
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with > or =30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.  相似文献   

9.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

10.
用响应面法对蜂房哈夫尼菌(Hafnia alvei)L-赖氨酸脱羧酶产酶诱导条件进行优化。首先通过单因素实验对产酶体系的pH、震荡培养时间、静置培养时间、诱导物添加量和Ⅷ添加量进行优化。在此基础上,用部分因子重复试验筛选出对酶活影响显著的3个因素(静置培养时间,诱导物添加量,VB6添加量),再通过Box-behnken实验对这三个因素进行优化,得出最优值。最终得到产酶最佳诱导条件为:震荡培养阶段培养基pH6.5,静置培养阶段pH5.5;摇床震荡培养11h后静置培养7.5h,诱导物L一赖氨酸加入量为5.18dL,维生素B6加入量为1.38g/L时酶活最高,达到71.2U/mL,为优化前(1.74u/mL)的41.8倍,在单因素的基础上提高了19%。  相似文献   

11.
The effects of changes in the gut environment upon the human colonic microbiota are poorly understood. The response of human fecal microbial communities from two donors to alterations in pH (5.5 or 6.5) and peptides (0.6 or 0.1%) was studied here in anaerobic continuous cultures supplied with a mixed carbohydrate source. Final butyrate concentrations were markedly higher at pH 5.5 (0.6% peptide mean, 24.9 mM; 0.1% peptide mean, 13.8 mM) than at pH 6.5 (0.6% peptide mean, 5.3 mM; 0.1% peptide mean, 7.6 mM). At pH 5.5 and 0.6% peptide input, a high butyrate production coincided with decreasing acetate concentrations. The highest propionate concentrations (mean, 20.6 mM) occurred at pH 6.5 and 0.6% peptide input. In parallel, major bacterial groups were monitored by using fluorescence in situ hybridization with a panel of specific 16S rRNA probes. Bacteroides levels increased from ca. 20 to 75% of total eubacteria after a shift from pH 5.5 to 6.5, at 0.6% peptide, coinciding with high propionate formation. Conversely, populations of the butyrate-producing Roseburia group were highest (11 to 19%) at pH 5.5 but fell at pH 6.5, a finding that correlates with butyrate formation. When tested in batch culture, three Bacteroides species grew well at pH 6.7 but poorly at pH 5.5, which is consistent with the behavior observed for the mixed community. Two Roseburia isolates grew equally well at pH 6.7 and 5.5. These findings suggest that a lowering of pH resulting from substrate fermentation in the colon may boost butyrate production and populations of butyrate-producing bacteria, while at the same time curtailing the growth of Bacteroides spp.  相似文献   

12.
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.  相似文献   

13.
Brown macroalgae are a sustainable and promising source for bioethanol production because they are abundant in ocean ecosystems and contain negligible quantities of lignin. Brown macroalgae contain cellulose, hemicellulose, mannitol, laminarin, and alginate as major carbohydrates. Among these carbohydrates, brown macroalgae are characterized by high levels of alginate and mannitol. The direct bioconversion of alginate and mannitol into ethanol requires extensive bioengineering of assimilation processes in the standard industrial microbe Saccharomyces cerevisiae. Here, we constructed an alginate-assimilating S. cerevisiae recombinant strain by genome integration and overexpression of the genes encoding endo- and exo-type alginate lyases, DEH (4-deoxy-l-erythro-5-hexoseulose uronic acid) transporter, and components of the DEH metabolic pathway. Furthermore, the mannitol-metabolizing capacity of S. cerevisiae was enhanced by prolonged culture in a medium containing mannitol as the sole carbon source. When the constructed strain AM1 was anaerobically cultivated in a fermentation medium containing 6% (w/v) total sugars (approximately 1:2 ratio of alginate/mannitol), it directly produced ethanol from alginate and mannitol, giving 8.8 g/L ethanol and yields of up to 32% of the maximum theoretical yield from consumed sugars. These results indicate that all major carbohydrates of brown macroalgae can be directly converted into bioethanol by S. cerevisiae. This strain and system could provide a platform for the complete utilization of brown macroalgae.  相似文献   

14.
Under anaerobic 2-ketogluconate-limited growth conditions (D = 0.1 h-1), Klebsiella pneumoniae NCTC 418 was found to convert this carbon source to biomass, acetate, formate, CO2, ethanol and succinate. The observed fermentation pattern is in agreement with the simultaneous functioning of the pentose phosphate pathway and the Entner-Doudoroff pathway in 2-ketogluconate catabolism. When cultured at pH 8.0 apparent YATP values were lower than those found at culture pH 6.5. This difference can be explained by assuming that at high culture pH values approximately 0.5 mol ATP was invested in the uptake of 1 mol 2-ketogluconate. Sudden relief of 2-ketogluconate-limited conditions led to lowering of the intracellular NADPH/NADP ratio and (possibly as a result of this) to inhibition of biosynthesis. Whereas production of ethanol stopped, lactate was produced at high rate. This product was formed, at least partly, via the methylglyoxal bypass.  相似文献   

15.
The effects of changes in the gut environment upon the human colonic microbiota are poorly understood. The response of human fecal microbial communities from two donors to alterations in pH (5.5 or 6.5) and peptides (0.6 or 0.1%) was studied here in anaerobic continuous cultures supplied with a mixed carbohydrate source. Final butyrate concentrations were markedly higher at pH 5.5 (0.6% peptide mean, 24.9 mM; 0.1% peptide mean, 13.8 mM) than at pH 6.5 (0.6% peptide mean, 5.3 mM; 0.1% peptide mean, 7.6 mM). At pH 5.5 and 0.6% peptide input, a high butyrate production coincided with decreasing acetate concentrations. The highest propionate concentrations (mean, 20.6 mM) occurred at pH 6.5 and 0.6% peptide input. In parallel, major bacterial groups were monitored by using fluorescence in situ hybridization with a panel of specific 16S rRNA probes. Bacteroides levels increased from ca. 20 to 75% of total eubacteria after a shift from pH 5.5 to 6.5, at 0.6% peptide, coinciding with high propionate formation. Conversely, populations of the butyrate-producing Roseburia group were highest (11 to 19%) at pH 5.5 but fell at pH 6.5, a finding that correlates with butyrate formation. When tested in batch culture, three Bacteroides species grew well at pH 6.7 but poorly at pH 5.5, which is consistent with the behavior observed for the mixed community. Two Roseburia isolates grew equally well at pH 6.7 and 5.5. These findings suggest that a lowering of pH resulting from substrate fermentation in the colon may boost butyrate production and populations of butyrate-producing bacteria, while at the same time curtailing the growth of Bacteroides spp.  相似文献   

16.
Park JK  Jung JY  Park YH 《Biotechnology letters》2003,25(24):2055-2059
The addition of 1% (v/v) ethanol to the basal medium inhibited growth of Gluconacetobacter hansenii but decreased the numbers of non-cellulose producing cells. Cellulose production increased 1.7 times to approx. 2.5 g l(-1) and showed a pattern of mixed growth-associated production. Microbial cells produced rigid pellicle-type bacterial cellulose as the shell of a large lump of bacterial cellulose like a static culture. The inoculum cultivated for 3 d maintained cellulose production by the fifth batch.  相似文献   

17.
Several natural associations composed by thermophilic anaerobic bacteria capable of utilizing various cellulose materials at 60 +/- 2 degrees C and pH 6.0-7.0 were isolated from the sludge of Kamchatka geothermal springs. The rate of ethanol production (up to 1.7 g/l per day) and the concentration of ethanol in the medium (up to 1.2%), as well as the fermentation period (10-15 days) were determined under anaerobic conditions in the presence of cellulose, coniferous sawdust, newsprint, or paper pulp as a carbon source. Microorganisms were found that inhibited the production of ethanol. The initial pH value was found to influence both the ethanol production rate and ethanol/acetate ratio. A pH decrease from 7.0 to 5.0 led to 6.7-fold increased the ethanol production and caused a 23.8-fold increase in the ethanol/acetate ratio.  相似文献   

18.
Bacillus licheniformis ATCC 9945A was grown on Medium E in batch fermentations in which the pH was maintained at 5.5., 6.5, 7.4, and 8.25. The effects of pH on cell growth, carbon source utilization, and gamma-polyglutamic acid (gamma-PGA) production, molecular weight, and polymer stereochemistry were determined. The gamma-PGA yield was highest (15 g/L, 96 h growth time) at pH 6.5. The increase in gamma-PGA formation at pH 6.5 corresponded with a relatively high specific production rate at high gamma-PGA concentration (0.09 h(-1), approximately 15 g/L gamma-PGA). In contrast, the specific gamma-PGA production rates at fermentor pH values of 5.5 and 7.4 decreased significantly for gamma-PGA fermentor yields > approximately 5 g/L. Interestingly, alteration of the medium pH had little to no significant effects on the product quality as measured by stereochemical composition and molecular weight. While glutamate and glycerol utilization were similar as a function of pH, citrate consumption increased at pH 6.5, indicating that the formation of gamma-PGA from citrate at pH 6.5 was of increased importance. The effect of aeration was evaluated by increasing the agitation speed (250 to 800 rpm) and aeration rate (0.5 to 2.0 L/min) at pH 6.5, the pH of maximal gamma-PGA production. Increased aeration resulted in doubling of the cell dry weights (2 to 4 g/L), increasing gamma-PGA yields (6.3 to 23 g/L by 48 h) and increasing in the maximum gamma-PGA-specific production rate (0.09 to 0.11 h(-1)). Other effects of increased agitation included a rapid depletion of glutamate and citrate (by 50 h) and a decrease in product molecular weight. Despite the increase in agitation and aeration, oxygen limitation of the culture was not avoided, because the partial pressure decreased to <1.0% by 29 h. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
The production of xylitol from concentrated synthetic xylose solutions (S(o) = 130-135 g/L) by Debaryomyces hansenii was investigated at different pH and temperature values. At optimum starting pH (pH(o) = 5.5), T = 24 degrees C, and relatively low starting biomass levels (0.5-0.6 g(x)/L), 88% of xylose was utilized for xylitol production, the rest being preferentially fermented to ethanol (10%). Under these conditions, nearly 70% of initial carbon was recovered as xylitol, corresponding to final xylitol concentration of 91.9 g(P)/L, product yield on substrate of 0.81 g(P)/g(S), and maximum volumetric and specific productivities of 1.86 g(P)/L x h and 1.43 g(P)/g(x) x h, respectively. At higher and lower pH(o) values, respiration also became important, consuming up to 32% of xylose, while negligible amounts were utilized for cell growth (0.8-1.8%). The same approach extended to the effect of temperature on the metabolism of this yeast at pH(o) = 5.5 and higher biomass levels (1.4-3.0 g(x)/L) revealed that, at temperatures ranging from 32-37 degrees C, xylose was nearly completely consumed to produce xylitol, reaching a maximum volumetric productivity of 4.67 g(P)/L x h at 35 degrees C. Similarly, both respiration and ethanol fermentation became significant either at higher or at lower temperatures. Finally, to elucidate the kinetic mechanisms of both xylitol production and thermal inactivation of the system, the related thermodynamic parameters were estimated from the experimental data with the Arrhenius model: activation enthalpy and entropy were 57.7 kJ/mol and -0.152 kJ/mol x K for xylitol production and 187.3 kJ/mol and 0.054 kJ/mol x K for thermal inactivation, respectively.  相似文献   

20.
Ruminal cellulolytic bacteria (Fibrobacter succinogenes S85 or Ruminococcus flavefaciens FD-1) were combined with the non-ruminal bacterium Clostridium kluyveri and grown together on cellulose and ethanol. Succinate and acetate produced by the cellulolytic organisms were converted to butyrate and caproate only when the culture medium was supplemented with ethanol. Ethanol (244 mM) and butyrate (30 mM at pH 6.8) did not inhibit cellulose digestion or product formation by S85 or FD-1; however caproate (30 mM at pH 6.8) was moderately inhibitory to FD-1. Succinate consumption and caproate production were sensitive to culture pH, with more caproic acid being produced when the culture was controlled at a pH near neutrality. In a representative experiment under conditions of controlled pH (at 6.8) 6.0 g cellulose 1–1 and 4.4 g ethanol 1–1 were converted to 2.6 g butyrate 1–1 and 4.6 g caproate 1–1. The results suggest that bacteria that efficiently produce low levels of ethanol and acetate or succinate from cellulose should be useful in cocultures for the production of caproic acid, a potentially useful industrial chemical and bio-fuel precursor.Mention of specific products is intended only to provide information and does not contitute an endorsement by the U.S. Department of Agriculture over other products not mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号