首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural organization of the first optic ganglion (lamina) of the cockroach (Periplaneta americana) was investigated by the use of light and electron microscopy. Each compound eye of the cockroach is composed of up to 2000 visual units (ommatidia) of the fused rhabdom type. The ommatidia themselves consist of eight receptor cells which terminate as axons in either the first or second optic ganglion. Three different short visual fibre types end in two separate strata in the lamina, and one long fibre type ends in the second optic ganglion. Monopolar second-order neurons with wide field branching patterns in the middle stratum of the first synaptic region have postsynaptic contacts with short visual fibres. Horizontal fibre elements with branching patterns at different levels of the lamina apparently form three horizontal plexuses with presynaptic and/or postsynaptic connections to first- and secondorder neurons. The lack of well-organized fibre cartridges containing a constant number of first and second order neurons in each fascicle and the presence of only unistratified wide field monopolar cells could represent, as compared to other insect orders, a primitive stage in the development of the first optic ganglion.  相似文献   

2.
The X-linked Mecp2 is a known interpreter of epigenetic information and mutated in Rett syndrome, a complex neurological disease. MeCP2 recruits HDAC complexes to chromatin thereby modulating gene expression and, importantly regulates higher order heterochromatin structure. To address the effects of MeCP2 deficiency on heterochromatin organization during neural differentiation, we developed a versatile model for stem cell in vitro differentiation. Therefore, we modified murine Mecp2 deficient (Mecp2 −/y) embryonic stem cells to generate cells exhibiting green fluorescent protein expression upon neural differentiation. Subsequently, we quantitatively analyzed heterochromatin organization during neural differentiation in wild type and in Mecp2 deficient cells. We found that MeCP2 protein levels increase significantly during neural differentiation and accumulate at constitutive heterochromatin. Statistical analysis of Mecp2 wild type neurons revealed a significant clustering of heterochromatin per nuclei with progressing differentiation. In contrast we found Mecp2 deficient neurons and astroglia cells to be significantly impaired in heterochromatin reorganization. Our results (i) introduce a new and manageable cellular model to study the molecular effects of Mecp2 deficiency, and (ii) support the view of MeCP2 as a central protein in heterochromatin architecture in maturating cells, possibly involved in stabilizing their differentiated state.  相似文献   

3.
M S Livingstone  C C Pack  R T Born 《Neuron》2001,30(3):781-793
Neurons at progressively higher levels of the visual system have progressively larger, more complicated receptive fields, presumably constructed from simpler antecedent receptive fields. To study this hierarchical organization, we used sparse white noise to map receptive-field substructure (second order Wiener-like kernels) in an extrastriate motion processing area (MT) of alert monkeys. The maps revealed a clear substructure, on a spatial scale comparable to the receptive fields of the V1 inputs. There were both facilitatory and suppressive interactions that differed in spatial organization and time course. Directional interactions were remarkably precise over a very small spatial range, and reversed when successive stimuli reversed contrast--a neural correlate of "reverse phi" motion perception. The maps of some cells had an unexpected, curved shape, which challenges existing models for direction selectivity.  相似文献   

4.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

5.
P J Harte  D R Kankel 《Genetics》1982,101(3-4):477-501
A genetic analysis of the dominant mutation Glued that perturbs the development of the normal axonal architecture of the fly's visual system was undertaken. Ten new alleles at this locus were identified and characterized. Two complementation groups that were identified failed to complement the original allele, suggesting that it is a double mutant or that it resides at a complex locus. Several of the new alleles display visual-system abnormalities similar to those of the original mutation. Seven of the eight members of one complementation group are embryonic/early larval lethals, like the original mutation. The other allele in this group is temperature sensitive. Homozygous mutant adults exhibit a temperature-sensitive female sterile phenotype. Unsuccessful attempts to recover genetic mosaics carrying clones of cells homozygous for some of these mutations revealed that they are either essential for the viability of individual cells or that they affect some other fundamental cellular function, such as mitosis or the ability to participate in tissue level organization, which prevents them from being recovered in adult mosaics. This also indicates that these mutations do not specifically affect neural cells. A number of X-ray- and EMS-induced partial and complete phenotypic "revertants" of the original allele have also been isolated as material for a comparative analysis of visual system development. All "revertants" that alter the abnormal eye phenotype towards the wild type have similar impact on the organization of the optic lobe.  相似文献   

6.
A map for horizontal disparity in monkey V2   总被引:1,自引:0,他引:1  
Chen G  Lu HD  Roe AW 《Neuron》2008,58(3):442-450
The perception of visual depth is determined by integration of spatial disparities of inputs from the two eyes. Single cells in visual cortex of monkeys are known to respond to specific binocular disparities; however, little is known about their functional organization. We now show, using intrinsic signal optical imaging and single-unit physiology, that, in the thick stripe compartments of the second visual area (V2), there is a clustered organization of Near cells and Far cells, and moreover, there are topographic maps for Near to Far disparities within V2. Our findings suggest that maps for visual disparity are calculated in V2, and demonstrate parallels in functional organization between the thin, pale, and thick stripes of V2.  相似文献   

7.
Sympathetic neuron differentiation was studied using a fluorescence histochemical assay to detect the appearance of cell-bound catecholamines. Results from in vitro organ cultures indicate that chick neural crest cells must interact with both ventral neural tube (defined throughout as the ventral neural tube plus the notochord) and somitic mesenchyme in order to differentiate into sympathoblasts. Somite, ventral neural tube, and crest were cultured transfilter in various combinations to define these tissue interactions more precisely. Results from these experiments indicate that neural crest cells must be contiguous to somite in order to differentiate into sympathoblasts, but ventral neural tube may act across a Millipore filter membrane (type TH, 25 μm thick) either on somite, crest, or both. To distinguish among these possibilities, somite was cultured transfilter to ventral tube for a short period, after which ventral tube was removed and fresh crest was added to the somite. The results from this and other experiments support the hypothesis that the ventral tube does not act directly on crest cells, but elicits a developmental change in somitic mesenchyme, which then promotes sympathoblast differentiation. To study the relationship of nerve growth factor (NGF) to the differentiation of sympathetic neurons, cultures of somite + crest were temporarily exposed transfilter to ventral tube, in the presence or the absence of exogenous NGF. The results of these and other experiments are consistent with the hypothesis that the continued presence of ventral tube is required to ensure the survival of the differentiating sympathetic neurons. With respect to this second function, ventral tube can be replaced by exogenous NGF.  相似文献   

8.
A multilayer neural nerwork model for the perception of rotational motion has been developed usingReichardt's motion detector array of correlation type, Kohonen's self-organized feature map and Schuster-Wagner's oscillating neural network. It is shown that the unsupervised learning could make the neurons on the second layer of the network tend to be self-organized in a form resembling columnar organization of selective directions in area MT of the primate's visual cortex. The output layer can interpret rotation information and give the directions and velocities of rotational motion. The computer simulation results are in agreement with some psychophysical observations of rotation-al perception. It is demonstrated that the temporal correlation between the oscillating neurons would be powerful for solving the "binding problem" of shear components of rotational motion.  相似文献   

9.
Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal much about the neural mechanisms of our perceptual organization.  相似文献   

10.

Background

The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs).

Methodology/Principal Findings

Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs. One is a homologue of Drosophila futsch, which encodes a microtubule-associated protein and is preferentially expressed in the monopolar cells in the lamina of the OLs. The gene for another microtubule-associated protein, tau, which functionally overlaps with futsch, was also preferentially expressed in the monopolar cells, strongly suggesting the functional importance of these two microtubule-associated proteins in monopolar cells. The other gene encoded a homologue of Misexpression Suppressor of Dominant-negative Kinase Suppressor of Ras 2 (MESK2), which might activate Ras/MAPK-signaling in Drosophila. MESK2 was expressed preferentially in a subclass of neurons located in the ventral region between the lamina and medulla neuropil in the OLs, suggesting that this subclass is a novel OL neuron type characterized by MESK2-expression. These three genes exhibited similar expression patterns in the worker, drone, and queen brains, suggesting that they function similarly irrespective of the honeybee sex or caste.

Conclusions

Here we identified genes that are expressed in a monopolar cell (Amfutsch and Amtau) or ventral medulla-preferential manner (AmMESK2) in insect OLs. These genes may aid in visualizing neurites of monopolar cells and ventral medulla cells, as well as in analyzing the function of these neurons.  相似文献   

11.
12.
《Journal of Physiology》1996,90(3-4):185-188
Whole cell patch recordings have been realized in the primary visual cortex of the anesthetized and paralyzed cat, in order to better characterize input resistance and time constant of visual cortical cells in vivo. Measurements of conductance changes evoked by visual stimulation were derived from voltage clamp recordings achieved in continuous mode at two or more different subtreshold holding potentials. They show that the magnitude of the conductance increase can reach up to 300% of the mean conductance at rest. The observation of similar changes for the preferred and antagonist responses, when flashing ON and OFF, a test stimulus in pure ON and OFF subfields supports the hypothesis of a role for shunting inhibition in the spatial organization of simple receptive fields.  相似文献   

13.
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.  相似文献   

14.
Neurons of cranial sensory ganglia are derived from the neural crest and ectodermal placodes, but the mechanisms that control the relative contributions of each are not understood. Crest cells of the second branchial arch generate few facial ganglion neurons and no vestibuloacoustic ganglion neurons, but crest cells in other branchial arches generate many sensory neurons. Here we report that the facial ganglia of Hoxa2 mutant mice contain a large population of crest-derived neurons, suggesting that Hoxa2 normally represses the neurogenic potential of second arch crest cells. This may represent an anterior transformation of second arch neural crest cells toward a fate resembling that of first arch neural crest cells, which normally do not express Hoxa2 or any other Hox gene. We additionally found that overexpressing Hoxa2 in cultures of P19 embryonal carcinoma cells reduced the frequency of spontaneous neuronal differentiation, but only in the presence of cotransfected Pbx and Meis Hox cofactors. Finally, expression of Hoxa2 and the cofactors in chick neural crest cells populating the trigeminal ganglion also reduced the frequency of neurogenesis in the intact embryo. These data suggest an unanticipated role for Hox genes in controlling the neurogenic potential of at least some cranial neural crest cells.  相似文献   

15.
We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.  相似文献   

16.
The function of the cerebral cortex is dependent on the precise organization of the circuits formed by its component neurons. The connections between neurons are not random, but are specific at multiple levels of organization. For example, each cortical area connects to only a selected subset of other areas and within any given area the axonal and dendritic arbors of individual neurons arborize in precise, layer-specific patterns (for review see Felleman & Van Essen, 1991; Callaway, 1998) . In each layer there are dendrites from multiple cell types including cells with somata both within and outside that layer. Anatomical studies have shown that axons arborizing in a particular cortical layer can connect selectively onto dendrites of some cell types in the layer, while avoiding the dendrites of other cell types (e.g. Freund & Gulyas, 1991; Hornung & Celio, 1992; Staiger et al., 1996). These cell type specific connections are, however, difficult to elucidate with anatomical methods, so the frequency of such specificity has remained elusive. Recent experimental methods combining intracellular recording of single neurons with focal neuronal stimulation by uncaging glutamate with light (“photostimulation”) have made the analysis of cell type specific cortical connections more tractable. These studies show that cell type specificity of connections is prevalent in cortex. Here I review photostimulation-based studies investigating the laminar sources of cortical input to distinct cell types in the visual and somatosensory cortices of rats and the primary visual cortex of monkeys.  相似文献   

17.
Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist ‘What’ and ‘Where’ pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives ‘where’, for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The computational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.  相似文献   

18.
In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.  相似文献   

19.
Hyaluronan is a free glycosaminoglycan which is abundant in the extracellular matrix of the developing brain. Although not covalently linked to any protein it can act as a backbone molecule forming aggregates with chondroitin sulfate proteoglycans of the lectican family and link proteins. Using neurocan-GFP as a direct histochemical probe we analyzed the distribution and organization of hyaluronan in the developing mouse cerebellum, and related its fine structure to cell types of specified developmental stages. We observed a high affinity of this probe to fiber-like structures in the prospective white matter which are preferentially oriented parallel to the cerebellar cortex during postnatal development suggesting a specially organized form of hyaluronan. In other layers of the cerebellar cortex, the hyaluronan organization seemed to be more diffuse. During the second postnatal week, the overall staining intensity of hyaluronan in the white matter declined but fiber-like structures were still present at the adult stage. This type of hyaluronan organization is different from perineuronal nets e.g. found in deep cerebellar nuclei. Double staining experiments with cell type specific markers indicated that these fiber-like structures are predominantly situated in regions where motile cells such as Pax2-positive inhibitory interneuron precursors and MBP-positive oligodendroglial cells are located. In contrast, more stationary cells such as mature granule cells and Purkinje cells are associated with lower levels of hyaluronan in their environment. Thus, hyaluronan-rich fibers are concentrated at sites where specific neural precursor cell types migrate, and the anisotropic orientation of these fibers suggests that they may support guided neural migration during brain development.  相似文献   

20.
When dealing with natural scenes, sensory systems have to process an often messy and ambiguous flow of information. A stable perceptual organization nevertheless has to be achieved in order to guide behavior. The neural mechanisms involved can be highlighted by intrinsically ambiguous situations. In such cases, bistable perception occurs: distinct interpretations of the unchanging stimulus alternate spontaneously in the mind of the observer. Bistable stimuli have been used extensively for more than two centuries to study visual perception. Here we demonstrate that bistable perception also occurs in the auditory modality. We compared the temporal dynamics of percept alternations observed during auditory streaming with those observed for visual plaids and the susceptibilities of both modalities to volitional control. Strong similarities indicate that auditory and visual alternations share common principles of perceptual bistability. The absence of correlation across modalities for subject-specific biases, however, suggests that these common principles are implemented at least partly independently across sensory modalities. We propose that visual and auditory perceptual organization could rely on distributed but functionally similar neural competition mechanisms aimed at resolving sensory ambiguities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号