首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pioselli B  Bettati S  Mozzarelli A 《FEBS letters》2005,579(10):2197-2202
Biological molecules experience in vivo a highly crowded environment. The investigation of the functional properties of the tryptophan synthase alpha(2)beta(2) complex either entrapped in wet nanoporous silica gels or in the presence of the crowding agents dextran 70 and ficoll 70 indicates that the rates of the conformational transitions associated to catalysis and regulation are reduced, and an open and less catalytically active conformation is stabilized.  相似文献   

2.
The interaction of the alpha and beta 2 subunits of tryptophan synthase of Escherichia coli to form an alpha 2 beta 2 complex has been probed by differential labeling studies. In the first step the separate alpha or beta 2 subunit or the alpha 2 beta 2 complex was labeled by reductive methylation with trace amounts of [3H]HCHO in the presence of NaCNBH3. In the second step the 3H-labeled preparation was fully labeled under denaturing conditions with [14C]HCHO and NaCNBH3. Peptides containing labeled monomethyl or dimethyl amino groups were isolated after thermolytic digestion or after cyanogen bromide treatment. The 3H/14C ratio of each peptide is a measure of the relative reactivity of the amino group or groups in each peptide. The most reactive amino group in the alpha subunit, lysine-109, is strongly shielded from modification in the alpha 2 beta 2 complex. The most reactive amino group in the beta 2 subunit, the amino-terminal threonine, is not shielded from modification in the alpha 2 beta 2 complex.  相似文献   

3.
The tryptophan synthase alpha 2 beta 2 complex catalyzes tryptophan (Trp) biosynthesis from serine plus either indole (IN) or indole-3-glycerol phosphate (InGP). The photoreactive 5-azido analog in IN (AzIN), itself a substrate in the dark, was utilized to examine the substrate binding sites on this enzyme. When irradiated with AzIN at concentrations approaching IN saturation for the IN----Trp activity (0.1 mM), in the absence of serine, the enzyme was increasingly inactivated (up to 70-80%) concomitant with the progressive binding of a net of 2 mol AzIN per alpha beta equivalent. Little or no cooperativity in the binding of the 2 mol AzIN was observed. In contrast, there was minimal effect on the IN----InGP activity. Under these conditions AzIN appeared to be incorporated equally into each subunit. No significant inactivation nor binding occurred in the presence of serine. A quantitatively similar inactivation of InGP----Trp activity was observed over the same AzIN concentration range, suggesting common IN sites for Trp biosynthesis from either indole substrate. At higher concentrations (0.1-0.7 mM), no further inactivation occurred, although there was extensive additional binding (up to 10 mol/alpha beta equivalent). These data are consistent, although more clear-cut quantitatively, with the high- and low-affinity sites proposed from equilibrium dialysis studies. AzIN binding studies utilizing the isolated beta 2 subunit confirmed earlier reports suggesting the existence of many nonspecific IN binding sites on this subunit.  相似文献   

4.
The three-dimensional structure of the alpha 2 beta 2 complex of tryptophan synthase from Salmonella typhimurium has been determined by x-ray crystallography at 2.5 A resolution. The four polypeptide chains are arranged nearly linearly in an alpha beta beta alpha order forming a complex 150 A long. The overall polypeptide fold of the smaller alpha subunit, which cleaves indole glycerol phosphate, is that of an 8-fold alpha/beta barrel. The alpha subunit active site has been located by difference Fourier analysis of the binding of indole propanol phosphate, a competitive inhibitor of the alpha subunit and a close structural analog of the natural substrate. The larger pyridoxal phosphate-dependent beta subunit contains two domains of nearly equal size, folded into similar helix/sheet/helix structures. The binding site for the coenzyme pyridoxal phosphate lies deep within the interface between the two beta subunit domains. The active sites of neighboring alpha and beta subunits are separated by a distance of about 25 A. A tunnel with a diameter matching that of the intermediate substrate indole connects these active sites. The tunnel is believed to facilitate the diffusion of indole from its point of production in the alpha subunit active site to the site of tryptophan synthesis in the beta active site and thereby prevent its escape to the solvent during catalysis.  相似文献   

5.
S A Ahmed  C C Hyde  G Thomas  E W Miles 《Biochemistry》1987,26(17):5492-5498
An improved and efficient method has been developed for the purification of the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) from Salmonella typhimurium containing a multicopy plasmid. Microcrystals prepared in 12% poly(ethylene glycol) 8000 containing 2.5 mM spermine are shown by scanning electron microscopy to have the same crystal habit as the larger crystals that are being used for structural analysis by X-ray crystallography. The average dimensions of the crystals are 33 microns (length) X 9 microns (width) X 3 microns (maximum thickness). Our finding that suspensions of microcrystals are active in several reactions catalyzed by the active sites of the alpha and beta 2 subunits demonstrates that both active sites are functional in the crystal and accessible to substrates. Thus the larger crystals being used for X-ray crystallographic studies should form complexes with substrates and analogues at both active sites and should yield functionally relevant structural information. A comparison of the reaction rates of suspensions of microcrystals with those of the soluble enzyme shows that the maximum rate of the crystalline enzyme is 0.8 that of the soluble enzyme in the cleavage of indole-3-glycerol phosphate (alpha reaction), 0.3 that of the soluble enzyme in the synthesis of L-tryptophan by the beta reaction or the coupled alpha beta reaction, and 2.7 that of the soluble enzyme in the serine deaminase reaction. These small differences in rates probably reflect functional differences between the crystalline and soluble enzymes since the reaction rates of the microcrystals are calculated to be virtually free of diffusional limitation under these reaction conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
E W Miles 《Biochemistry》1987,26(2):597-603
Tryptophan synthase is a versatile enzyme that catalyzes a wide variety of pyridoxal phosphate dependent reactions that are also catalyzed in model systems. These include beta-replacement, beta-elimination, racemization, and transamination reactions. We now show that the apo-alpha 2 beta 2 complex of tryptophan synthase will bind two unnatural substrates, pyridoxamine phosphate and indole-3-pyruvic acid, and will convert them by a single-turnover, half-transamination reaction to pyridoxal phosphate and L-tryptophan, the natural coenzyme and a natural product, respectively. This enzyme-catalyzed reaction is more rapid and more stereospecific than an analogous model reaction. The pro-S 4'-methylene proton of pyridoxamine phosphate is removed during the reaction, and the product is primarily L-tryptophan. We conclude that pyridoxal phosphate enzymes may be able to catalyze some unnatural reactions involving bound reactants and bound coenzyme since the coenzyme itself has the intrinsic ability to promote a variety of reactions.  相似文献   

7.
The tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium can be crystallized by the method of vapor diffusion from solutions of polyethylene glycol 8000 and various salts. Thin needles are obtained in the presence of a monovalent cation (Na+), thicker crystals are obtained in the presence of divalent cations (Mg2+, Mn2+, Fe2+, Ca2+, Zn2+), and square-faced crystals are obtained in the presence of spermine. Although the spermine and Mg2+ crystals differ in morphology, they are both monoclinic and in space group C2 with a = 184.5 A, b = 62.4 A, c = 67.7 A, beta = 94 degrees 40', and one alpha beta pair of Mr = 71,700/asymmetric unit. The crystals appear reasonably resistant to radiation damage and should be suitable for a complete structure investigation. The separated S. typhimurium alpha, holo-beta 2, and apo-beta 2 subunits do not crystallize under these conditions nor do the alpha 2 beta 2 complex or the alpha- or holo-beta 2 subunits from Escherichia coli or from an interspecies hybrid.  相似文献   

8.
α-Cyanoglycine inactivates the pyridoxal-P forms of the β2 subunit and the α2β2 complex of tryptophan synthase; an intense chromophore at 430 nm forms concomitantly. The slow reactivation of the modified β2 subunit upon dialysis (t12 = 24 hours) is prevented by addition of α subunit, which presumably acts by changing the environment of the chromophoric derivative. These data and the observed protection from inhibition by L-serine indicate that α-cyanoglycine acts as a substrate analog which undergoes a second, largely irreversible reaction at the active site of the β2 subunit. Modification of the β2 subunit increases its affinity for the α subunit. Modification of the α2β2 complex increases its stability to heat, urea, and low pH.  相似文献   

9.
Tryptophan synthase is a pyridoxal 5'-phosphate-dependent alpha(2)beta(2) complex catalyzing the formation of L-tryptophan. The functional properties of one subunit are allosterically regulated by ligands of the other subunit. Molecules tailored for binding to the alpha-active site were designed using as a starting model the three-dimensional structure of the complex between the enzyme from Salmonella typhimurium and the substrate analog indole-3-propanol phosphate. On the basis of molecular dynamics simulations, indole-3-acetyl-X, where X is glycine, alanine, valine and aspartate, and a few other structurally related compounds were found to be good candidates for ligands of the alpha-subunit. The binding of the designed compounds to the alpha-active site was evaluated by measuring the inhibition of the alpha-reaction of the enzyme from Salmonella typhimurium. The inhibition constants were found to vary between 0.3 and 1.7 mM. These alpha-subunit ligands do not bind to the beta-subunit, as indicated by the absence of effects on the rate of the beta-reaction in the isolated beta(2) dimer. A small inhibitory effect on the activity of the alpha(2)beta(2) complex was caused by indole-3-acetyl-glycine and indole-3-acetyl-aspartate whereas a small stimulatory effect was caused by indole-3-acetamide. Furthermore, indole-3-acetyl-glycine, indole-3-acetyl-aspartate and indole-3-acetamide perturb the equilibrium of the catalytic intermediates formed at the beta-active site, stabilizing the alpha-aminoacrylate Schiff base. These results indicate that (i) indole-3-acetyl-glycine, indole-3-acetyl-aspartate and indole-3-acetamide bind to the alpha-subunit and act as allosteric effectors whereas indole-3-acetyl-valine and indole-3-acetyl-alanine only bind to the alpha-subunit, and (ii) the terminal phosphate present in the already known allosteric effectors of tryptophan synthase is not strictly required for the transmission of regulatory signals.  相似文献   

10.
This study explores the catalytic and allosteric roles of a flexible loop in tryptophan synthase. Trypsin is known to cleave the tryptophan synthase alpha 2 beta 2 complex in an alpha subunit loop at Arg-188. Cleavage yields an active "nicked" alpha 2 beta 2 derivative. The new results provide evidence that the alpha subunit loop serves two important roles: substrate binding and communicating the effects of substrate binding to the beta subunit. A role for the loop in substrate binding is supported by our finding that addition of a substrate analogue of the alpha subunit, alpha-glycerol 3-phosphate, decreases the rate of cleavage by trypsin. An allosteric role for the loop is supported by the finding although the native alpha 2 beta 2 complex is strongly inhibited by alpha-glycerol 3-phosphate, the nicked alpha 2 beta 2 complex is desensitized to this inhibition. The time course of proteolysis in the presence and absence of alpha-glycerol 3-phosphate is followed by sodium dodecyl sulfate-gel electrophoresis and by assays of activity in the presence and absence of alpha-glycerol 3-phosphate. We use spectroscopic measurements of the pyridoxal phosphate-L-tryptophan intermediates at the active site of the beta subunit to determine the affinity of the native and nicked enzymes for L-tryptophan and alpha-glycerol 3-phosphate. Although cleavage alters the equilibrium distribution of intermediates and reduces the affinity for alpha-glycerol 3-phosphate, it has little effect on the affinity for amino acids bound to the beta subunit. We conclude that the loop in the alpha subunit is important for ligand binding and for communicating the effects of ligand binding from the alpha subunit to the beta subunit in the alpha 2 beta 2 complex.  相似文献   

11.
Microspectrophotometry of single crystals of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium is used to compare the catalytic and regulatory properties of the enzyme in the soluble and crystalline states. Polarized absorption spectra demonstrate that chromophoric intermediates are formed between pyridoxal phosphate at the active site of the beta subunit and added substrates, substrate analogs, and reaction intermediate analogs. Although the crystalline and soluble forms of the enzyme produce some of the same enzyme-substrate intermediates, including Schiff base and quinonoid intermediates, in some cases the equilibrium distribution of these intermediates differs in the two states of the enzyme. Ligands which bind to the active site of the alpha subunit alter the distribution of intermediates formed at the active site of the beta subunit in both the crystalline and soluble states. The three-dimensional structures of the tryptophan synthase alpha 2 beta 2 complex and of a derivative with indole-3-propanol phosphate bound at the active site of the alpha subunit have recently been reported (Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) J. Biol. Chem. 264, 17857-17871). Our present findings help to establish experimental conditions for selecting defined intermediates for future x-ray crystallographic analysis of the alpha 2 beta 2 complex with ligands bound at the active sites of both alpha and beta subunits. These crystallographic studies should explain how catalysis occurs at the active site of the beta subunit and how the binding of a ligand to one active site affects the binding of a ligand to the other active site which is 25 A away.  相似文献   

12.
To probe the structural and functional roles of active-site residues in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium, we have determined the effects of mutation of His(86) in the beta subunit. His(86) is located adjacent to beta subunit Lys(87), which forms an internal aldimine with the pyridoxal phosphate and catalyzes the abstraction of the alpha-proton of L-serine. The replacement of His(86) by leucine (H86L) weakened pyridoxal phosphate binding approximately 20-fold and abolished the circular dichroism signals of the bound coenzyme and of a reaction intermediate. Correlation of these results with previous crystal structures indicates that beta-His(86) plays a structural role in binding pyridoxal phosphate and in stabilizing the correct orientation of pyridoxal phosphate in the active site of the beta subunit. The H86L mutation also altered the pH profiles of absorbance and fluorescence signals and shifted the pH optimum for the synthesis of L-tryptophan from pH 7.5 to 8.8. We propose that the interaction of His(86) with the phosphate of pyridoxal phosphate and with Lys(87) lowers the pK(a) of Lys(87) in the wild-type alpha(2)beta(2) complex and thereby facilitates catalysis by Lys(87) in the physiological pH range.  相似文献   

13.
The three-dimensional structure of the bifunctional tryptophan synthase alpha(2)beta(2) complex from Pyrococcus furiosus was determined by crystallographic analysis. This crystal structure, with the structures of an alpha subunit monomer and a beta(2) subunit dimer that have already been reported, is the first structural set in which changes in structure that occur upon the association of the individual tryptophan synthase subunits were observed. To elucidate the structural basis of the stimulation of the enzymatic activity of each of the alpha and beta(2) subunits upon alpha(2)beta(2) complex formation, the conformational changes due to complex formation were analyzed in detail compared with the structures of the alpha monomer and beta(2) subunit dimer. The major conformational changes due to complex formation occurred in the region correlated with the catalytic function of the enzyme as follows. (1) Structural changes in the beta subunit were greater than those in the alpha subunit. (2) Large movements of A46 and L165 in the alpha subunit due to complex formation caused a more open conformation favoring the entry of the substrate at the alpha active site. (3) The major changes in the beta subunit were the broadening of a long tunnel through which the alpha subunit product (indole) is transferred to the beta active site and the opening of an entrance at the beta active site. (4) The changes in the conformations of both the alpha and beta subunits due to complex formation contributed to the stabilization of the subunit association, which is critical for the stimulation of the enzymatic activities.  相似文献   

14.
To understand how the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli interact to form an alpha 2 beta 2 complex and undergo mutual activation, we have investigated alpha subunits with single amino acid replacements at conserved proline residues. Although the activities of alpha 2 beta 2 complexes that contain wild type alpha subunit or alpha subunits substituted at positions 28, 62, 96, and 207 are similar, the activities of alpha 2 beta 2 complexes that contain alpha subunits substituted at positions 57 and 132 are remarkably altered. Whereas the latter enzymes have greatly reduced activities in the individual half-reactions, they have considerably higher activities in the overall reaction. These remarkable activity results are explained by a decrease in the affinity of these mutant alpha subunits for the beta 2 subunit and by an increase in the affinity in the combined presence of ligands of both the alpha subunit and the beta 2 subunit. Isothermal calorimetric titrations of wild type beta 2 subunit with wild type alpha subunit and a mutant alpha subunit containing a substitution of glycine for proline at position 132 show that both the affinity and the exothermic association enthalpy are greatly reduced in the mutant alpha subunit although the stoichiometry of association is unchanged. The affinity of the mutant alpha subunit for the beta 2 subunits is greatly increased in the presence of an alpha subunit ligand, alpha-glycerol phosphate. We conclude that proline 132 plays a critical role in subunit interaction and in mutual subunit activation.  相似文献   

15.
This study investigates the catalytic and allosteric roles of a flexible loop in the tryptophan synthase alpha 2 beta 2 complex. This loop connects helix 6 and strand 6 in the alpha subunit, an 8-fold alpha/beta barrel polypeptide. We have engineered three mutations in this disordered loop: a deletion of residues 185-187 and the replacement of threonine 183 by serine (T183S) or by alanine (T183A). Position 183 is a site of an inactivating mutation identified by Yanofsky's group (Yanofsky, C., Drapeau, G. R., Guest, J. R., and Carlton, B. C. (1967) Proc. Natl. Acad. Sci. U.S.A. 57, 296-298). The three engineered alpha subunits form stable, stoichiometric alpha 2 beta 2 complexes with the beta subunit which bind alpha and beta subunit ligands. Although changing threonine 183 to serine has little effect on the enzymatic properties, changing threonine 183 to alanine or deleting residues 185-187 results in a 50-fold reduction in the intrinsic activity of the alpha subunit alone and in the alpha site activity of the alpha 2 beta 2 complex. The latter two mutations profoundly alter the way in which the alpha subunit modulates the spectral properties and the activities of the wild-type beta subunit. These mutations also eliminate the effects of alpha subunit ligands on the beta subunit. Although the beta subunit ligand, L-serine, greatly stabilizes the wild-type alpha 2 beta 2 complex to dissociation and to proteolysis, L-serine stabilizes the T183A alpha 2 beta 2 complex weakly or not at all. Our findings suggest that the hydroxyl residue at position 183 and the adjacent residues in the alpha subunit loop play critical roles in the reciprocal communication between the alpha and beta subunits in the alpha 2 beta 2 complex. The results also help to explain how the wild-type alpha subunit or ammonium ion modulates the activities of the beta subunit.  相似文献   

16.
Studies using Sephadex gel filtration indicated that the alpha and beta 2 components of the Bacillus subtilis tryptophan synthase associate to form complexes under the appropriate conditions of buffer, pH, and temperature. Monovalent cations, glycerol, and the cofactor, pyridoxal-5'-phosphate, were required to maintain and active beta 2 component, and in turn, affected the association of the alpha and beta 2 components. Under conditions that stabilized the individual components during their purification, the affinity of the subunits for each other was weak. Under the same buffer conditions, but at the higher pH of 7.8 which the enzymatic activities are assayed, the individual components readily associated. The substrate serine appeared to affect complex formation but there was no effect from the indole moiety. When the temperature was raised from 4 to 22-25 degrees C, complex formation was observed at both pH 6.6 and 7.8. The results of these experiments are consistent with the formation of alpha beta 2 and alpha 2 beta 2 species as the associated tryptophan synthase complexes of B. subtilis.  相似文献   

17.
We have synthesized bromoacetylpyridoxamine phosphate and bromoacetylpyridoxamine and have shown that they meet three criteria for affinity labels of the beta2 subunit of tryptophan synthase: (i) the kinetic data of inactivation indicate that a binary complex is formed prior to covalent attachment; (ii) inactivation is largely prevented by the presence of pyridoxal phosphate; and (iii) inactivation is stoichiometric with incorporation of 0.7 to 0.8 mol of chromophore/mol of beta monomer. Our conclusion that inactivation of the apo beta2 subunit by bromoacetylpyridoxamine phosphate is due to the modification of cysteine is based on the disappearance of 1 mol of -SH/beta monomer and on the finding that [14C]carboxymethyl derivative in the acid hydrolysate of the protein modified by bromo[14C]acetylpyridixamine phosphate. A 39-residue tryptic peptide containing this essential cysteine has been isolated and purified from the bromo[14C]acetylpyridoxamine phosphate-labeled beta2 subunit.  相似文献   

18.
An intracellular adriamycin (ADM)-binding protein purified from the cytosol of L1210 mouse lymphocytic leukemia cells had a molecular weight of 700-1500 kDa and hydrolyzed Suc-LLVY-MCA. When L1210 cells were incubated with a photoactive ADM analogue, N-(p-azidobenzoyl)-adriamycin (NAB-ADM), most of the NAB-ADM was found to localize in the nuclei. In situ photoaffinity labeling of L1210 cells with NAB-ADM resulted in low protease activity in the cytosol and nuclear extracts and the cells showed selective photoincorporation of NAB-ADM into the proteasome. These results suggest that the proteasome is a translocator of ADM from the cytoplasm to the nucleus and might therefore become a new candidate for cancer chemotherapy.  相似文献   

19.
V Witzemann  M A Raftery 《Biochemistry》1977,16(26):5862-5868
A bisazido derivative was synthesized from bis(3-aminopyridinium)-1,10-decane diiodide and it was shown that it was bound (KD congruent to 2.2 muM) specifically to purified acetylcholine receptor and fulfilled the requirements for a photoaffinity label. Like the parent compound the derivative could transform membrane-bound receptor from a low ligand affinity conformation(s) to a high ligand affinity form (s), a transition which is thought to resemble desensitization processes observed in vivo. Photolysis of 3H-labeled bisazido reagent was carried out in the presence of the receptor. After dodecyl sulfate-polyacrylamide gel electrophoresis of labeled purified receptor two of the four subunits (mol wt 40 000 and 60 000) contained 90% of the bound radioactivity while for membrane-bound receptor the subunits of mol wt 40 000 and 50 000 were labeled. The results favor the assumption that the specific ligand binding sites are located on mol wt 40 000 subunits and labeling of the other subunits reflects (a) their proximity to the ligand-binding site and (b) alterations in subunit topography between membrane-bound and solubilized states.  相似文献   

20.
The beta-adrenergic receptor photoaffinity ligand p-azido-m-[125I]iodobenzylcarazolol has been used to covalently label the beta 1 and beta 2 adrenergic receptor binding subunits present in left ventricular myocardial membranes derived from mammalian (including human) and nonmammalian species. Covalent incorporation of the photoaffinity ligand into membrane proteins was followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the case of the human, canine, porcine, rabbit, and rat left ventricle, all of which contain predominantly or exclusively beta 1-adrenergic receptors, two peptides of Mr approximately equal to 62,000 (major component) and Mr approximately equal to 55,000 (minor component) were specifically labeled and visualized by autoradiography. Photoincorporation into these two bands could be blocked with the appropriate drugs to display a beta 1-adrenergic receptor pharmacological specificity. Simultaneous sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples from each species revealed that all of the Mr = 62,000 peptides co-migrated suggesting similarity in the beta 1-adrenergic receptor binding subunit peptides in all of these species. The minor component Mr approximately equal to 55,000 appears to be a proteolytic degradation product of the Mr = to 62,000 peptide. Its formation could be decreased by proteinase inhibitors. This suggests that the heterogeneity of the labeling pattern observed in mammalian tissues in this and previous studies may be the result of proteolytic degradation of the receptor subunit which occurs during membrane preparation. Photoaffinity labeling of frog ventricular membranes which contain predominantly beta 2-adrenergic receptors also revealed two peptides of Mr approximately equal to 62,000 (major component) and 55,000 (minor component) with the pharmacological selectivity of a beta 2-adrenergic receptor. These data suggest marked similarities in the beta 1- and beta 2-adrenergic receptor binding subunits of different species and suggest that the pharmacological subtype might be determined by the detailed structure, i.e. amino acid sequence, at the ligand binding sites of the receptor peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号