首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.  相似文献   

2.
G+C3 structuring along the genome: a common feature in prokaryotes   总被引:1,自引:0,他引:1  
The heterogeneity of gene nucleotide content in prokaryotic genomes is commonly interpreted as the result of three main phenomena: (1) genes undergo different selection pressures both during and after translation (affecting codon and amino acid choice); (2) genes undergo different mutational pressure whether they are on the leading or lagging strand; and (3) genes may have different phylogenetic origins as a result of lateral transfers. However, this view neglects the necessity of organizing genetic information on a chromosome that needs to be replicated and folded, which may add constraints to single gene evolution. As a consequence, genes are potentially subjected to different mutation and selection pressures, depending on their position in the genome. In this paper, we analyze the structuring of different codon usage measures along completely sequenced bacterial genomes. We show that most of them are highly structured, suggesting that genes have different base content, depending on their location on the chromosome. A peculiar pattern of genome structure, with a tendency toward an A+T-enrichment near the replication terminus, is found in most bacterial phyla and may reflect common chromosome constraints. Several species may have lost this pattern, probably because of genome rearrangements or integration of foreign DNA. We show that in several species, this enrichment is associated with an increase of evolutionary rate and we discuss the evolutionary implications of these results. We argue that structural constraints acting on the circular chromosome are not negligible and that this natural structuring of bacterial genomes may be a cause of overestimation in lateral gene transfer predictions using codon composition indices.  相似文献   

3.
In bacterial genomes composed of more than one chromosome, one replicon is typically larger, harbors more essential genes than the others, and is considered primary. The greater variability of secondary chromosomes among related taxa has led to the theory that they serve as an accessory genome for specific niches or conditions. By this rationale, purifying selection should be weaker on genes on secondary chromosomes because of their reduced necessity or usage. To test this hypothesis we selected bacterial genomes composed of multiple chromosomes from two genera, Burkholderia and Vibrio, and quantified the evolutionary rates (dN and dS) of all orthologs within each genus. Both evolutionary rate parameters were faster among orthologs found on secondary chromosomes than those on the primary chromosome. Further, in every bacterial genome with multiple chromosomes that we studied, genes on secondary chromosomes exhibited significantly weaker codon usage bias than those on primary chromosomes. Faster evolution and reduced codon bias could in turn result from global effects of chromosome position, as genes on secondary chromosomes experience reduced dosage and expression due to their delayed replication, or selection on specific gene attributes. These alternatives were evaluated using orthologs common to genomes with multiple chromosomes and genomes with single chromosomes. Analysis of these ortholog sets suggested that inherently fast-evolving genes tend to be sorted to secondary chromosomes when they arise; however, prolonged evolution on a secondary chromosome further accelerated substitution rates. In summary, secondary chromosomes in bacteria are evolutionary test beds where genes are weakly preserved and evolve more rapidly, likely because they are used less frequently.  相似文献   

4.
As bacterial genome sequences accumulate, more and more pieces of data suggest that there is a significant correlation between the distribution of genes along the chromosome and the physical architecture of the cell, suggesting that the map of the cell is in the chromosome. Considering sequences and experimental data indicative of cell compartmentalisation, mRNA folding and turnover, as well as known structural features of protein and membrane complexes, we show that preliminary in silico analysis of whole genome sequences strongly substantiates this hypothesis. If there is a correlation between the genome sequence and the cell architecture, it must derive from some selection pressure in the organisms growing in the wild. As a consequence, the underlying constraints should be optimised in genetically modified organisms if one is to expect high product yields. Consequences in terms of gene expression for biotechnology are straightforward: knocking genes out and in genomes should not be randomly performed, but should follow the rules of chromosome organisation.  相似文献   

5.
6.
Two highly contrasted images depict genomes: at first sight, genes appear to be distributed randomly along the chromosome. In contrast, their organisation into operons (or pathogenicity islands) suggests that, at least locally, related functions are in physical proximity. Analysis of the codon usage bias in orthologous genes in the genome of bacteria which diverged a long time ago suggested that some physical (architectural) selection pressure organised the distribution of genes along the chromosome. The metabolism of highly reactive species such as sulphur-containing molecules must be compartmentalised to escape the deleterious actions of diffusible reagents such as gases or radicals. We analysed the distribution of sulphur metabolism genes in the genome of Escherichia coli and found a number of them to be clustered into statistically significant islands. Another interesting feature of these genes is that the proteins they encode are significantly deprived of cysteine and methionine residues, as compared to the bulk proteins. We speculate that this clustering is associated to the organisation of sulphur metabolism proteins into islands where the sensitive sulphur-containing molecules are protected from reacting with elements in the environment such as dioxygen, nitric oxide or radicals.  相似文献   

7.
8.
9.
Subramanian S  Kumar S 《Genetics》2004,168(1):373-381
Natural selection leaves its footprints on protein-coding sequences by modulating their silent and replacement evolutionary rates. In highly expressed genes in invertebrates, these footprints are seen in the higher codon usage bias and lower synonymous divergence. In mammals, the highly expressed genes have a shorter gene length in the genome and the breadth of expression is known to constrain the rate of protein evolution. Here we have examined how the rates of evolution of proteins encoded by the vertebrate genomes are modulated by the amount (intensity) of gene expression. To understand how natural selection operates on proteins that appear to have arisen in earlier and later phases of animal evolution, we have contrasted patterns of mouse proteins that have homologs in invertebrate and protist genomes (Precambrian genes) with those that do not have such detectable homologs (vertebrate-specific genes). We find that the intensity of gene expression relates inversely to the rate of protein sequence evolution on a genomic scale. The most highly expressed genes actually show the lowest total number of substitutions per polypeptide, consistent with cumulative effects of purifying selection on individual amino acid replacements. Precambrian genes exhibit a more pronounced difference in protein evolutionary rates (up to three times) between the genes with high and low expression levels as compared to the vertebrate-specific genes, which appears to be due to the narrower breadth of expression of the vertebrate-specific genes. These results provide insights into the differential relationship and effect of the increasing complexity of animal body form on evolutionary rates of proteins.  相似文献   

10.
The genomes of the spirochaetes Borrelia burgdorferi and Treponema pallidum show strong strand-specific skews in nucleotide composition, with the leading strand in replication being richer in G and T than the lagging strand in both species. This mutation bias results in codon usage and amino acid composition patterns that are significantly different between genes encoded on the two strands, in both species. There are also substantial differences between the species, with T.pallidum having a much higher G+C content than B. burgdorferi. These changes in amino acid and codon compositions represent neutral sequence change that has been caused by strong strand- and species-specific mutation pressures. Genes that have been relocated between the leading and lagging strands since B. burgdorferi and T.pallidum diverged from a common ancestor now show codon and amino acid compositions typical of their current locations. There is no evidence that translational selection operates on codon usage in highly expressed genes in these species, and the primary influence on codon usage is whether a gene is transcribed in the same direction as replication, or opposite to it. The dnaA gene in both species has codon usage patterns distinctive of a lagging strand gene, indicating that the origin of replication lies downstream of this gene, possibly within dnaN. Our findings strongly suggest that gene-finding algorithms that ignore variability within the genome may be flawed.  相似文献   

11.
Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

12.
13.
14.
The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5′ and 3′ untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.  相似文献   

15.
16.
Codon usage bias (CUB) results from the complex interplay between translational selection and mutational biases. Current methods for CUB analysis apply heuristics to integrate both components, limiting the depth and scope of CUB analysis as a technique to probe into the evolution and optimization of protein-coding genes. Here we introduce a self-consistent CUB index (scnRCA) that incorporates implicit correction for mutational biases, facilitating exploration of the translational selection component of CUB. We validate this technique using gene expression data and we apply it to a detailed analysis of CUB in the Pseudomonadales. Our results illustrate how the selective enrichment of specific codons among highly expressed genes is preserved in the context of genome-wide shifts in codon frequencies, and how the balance between mutational and translational biases leads to varying definitions of codon optimality. We extend this analysis to other moderate and fast growing bacteria and we provide unified support for the hypothesis that C- and A-ending codons of two-box amino acids, and the U-ending codons of four-box amino acids, are systematically enriched among highly expressed genes across bacteria. The use of an unbiased estimator of CUB allows us to report for the first time that the signature of translational selection is strongly conserved in the Pseudomonadales in spite of drastic changes in genome composition, and extends well beyond the core set of highly optimized genes in each genome. We generalize these results to other moderate and fast growing bacteria, hinting at selection for a universal pattern of gene expression that is conserved and detectable in conserved patterns of codon usage bias.  相似文献   

17.
18.
19.
Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitness effects of several spontaneous deletions. Deletion rates varied over 200-fold between different regions with the replication terminus region showing the highest rates. Approximately 25% of the examined deletions caused an increase in fitness under one or several growth conditions, and after serial passage of wild-type bacteria in rich medium for 1,000 generations we observed fixation of deletions that substantially increased bacterial fitness when reconstructed in a non-evolved bacterium. These results suggest that selection could be a significant driver of gene loss and reductive genome evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号