首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.  相似文献   

2.
Abstract An enzyme-linked immunosorbent assay (ELISA) has been developed to measure antibody levels in human sera to a candidate vaccine antigen, merozoite surface protein-1 (MSP1), of the malaria parasite Plasmodium falciparum . To ensure the detection of antibodies reactive with important conformational epitopes, antigens used in the ELISA were obtained from either in vitro parasite cultures, or from a baculovirus expression system in which correct folding of recombinant MSP1-derived polypeptides has been previously demonstrated. The specificity of the ELISA was confirmed using a novel antibody affinity select method. The assay was used to investigate the pattern of acquisition of anti-MSP1 antibodies in a cross-sectional survey of 387 3–8 year old residents of a malaria endemic area of the Gambia. A significant positive correlation between anti-MSP1 antibody levels and age was evident, though individual responses to two antigens corresponding to two distinct domains of the MSP1 varied widely.  相似文献   

3.
BACKGROUND: The carboxy-terminus of the merozoite surface protein-1 (MSP1) of Plasmodium falciparum has been implicated as a target of protective immunity. MATERIALS AND METHODS: Two recombinant proteins from the carboxy-terminus of MSP1, the 42 kD fused to GST (bMSP1(42)) and the 19 kD (yMSP1(19)), were expressed in Escherichia coli and secreted from Saccharomyces cerevisiae, respectively. To determine if vaccination with these recombinant proteins induces protective immunity, we conducted a randomized, blinded vaccine trial in two species of Aotus monkeys, A. nancymai and A. vociferans. After three injections using Freund's adjuvant, the monkeys were challenged with the virulent Vietnam Oak Knoll (FVO) strain of P. falciparum. RESULTS: All three control monkeys required treatment by Day 19. Two of three monkeys vaccinated with bMSP1(42) required treatment by Day 17, whereas the third monkey controlled parasitemia for 28 days before requiring treatment. In contrast, both of the A. nancymai vaccinated with yMSP1(19) self-resolved an otherwise lethal infection. One of the two yMSP1(19)-vaccinated A. vociferans had a prolonged prepatent period of > 28 days before requiring treatment. No evidence of mutations were evident in the parasites recovered after the prolonged prepatent period. Sera from the two A. nancymai that self-cured had no detectable effect on in vitro invasion. CONCLUSIONS: Vaccination of A. nancymai with yMSP1(19) induced protective immune responses. The course of recrudescing parasitemias in protected monkeys suggested that immunity is not mediated by antibodies that block invasion. Our data indicate that vaccine trials with the highly adapted FVO strain of P. falciparum can be tested in A. nancymai and that MSP1(19) is a promising anti-blood-stage vaccine for human trials.  相似文献   

4.
The Santa Lucia strain of Plasmodium falciparum was isolated from El Salvador, Central America, and established in Aotus trivirgatus monkeys. Transmission from monkey to monkey via the bites of infected Anopheles freeborni, A. maculatus, and A, albimanus mosquitoes was obtained in 20 of 27 attempts. Prepatent periods in the monkeys ranged from 17 to 46 days with a mean of 24.3 days. Parasitemias and mortality were higher following sporozoite inoculation into animals which had been previously infected with P. vivax than in those with no previous malaria experience. Monkeys previously infected with P. vivax and P. cynomolgi had lower maximum parasitemias than those previously infected with P. vivax only.  相似文献   

5.
The Cambodian I strain of Plasmodium falciparum, originally from Kampuchea was adapted for development in three different types of Aotus monkeys. High-level parasitemias were readily produced in splenectomized Colombian A. trivirgatus griseimembra monkeys. Initially, only minimal parasitemias developed in A. t. trivirgatus monkeys from Colombia. However, in one animal, adaptation occurred and high-level parasitemias were obtained during the second recrudescence of the infection. Passage to other A. t. trivirgatus monkeys indicated that the parasite was well adapted for development in splenectomized animals; low to moderate parasitemias were still produced in intact animals. This line of the parasite produced high level parasitemias when inoculated into splenectomized Aotus monkeys from Peru. Infections in Anopheles freeborni mosquitoes were obtained as late as the 7th passage in A. t. griseimembra monkeys and as late as the 7th recrudescence of the infection in an individual monkey (348 days after inoculation). The sporogonic cycle was completed in An. freeborni mosquitoes, and one transmission to an A. t. griseimembra monkey via the bites of infected mosquitoes was obtained.  相似文献   

6.
A Plasmodium falciparum chimeric protein 2.9 (PfCP-2.9) was constructed consisting of the C-terminal regions of two leading malaria vaccine candidates, domain III of apical membrane ag-1 (AMA-1) and 19-kDa C-terminal fragment of the merozoite surface protein 1 (MSP1). The PfCP-2.9 was produced by Pichia pastoris in secreted form with a yield of 2600 mg/L and approximately 1 g/L of final product was obtained from a three-step purification process. Analysis of conformational properties of the chimeric protein showed that all six conformational mAbs interacted with the recombinant protein were reduction-sensitive, indicating that fusion of the two cysteine-rich proteins retains critical conformational epitopes. PfCP-2.9 was found to be highly immunogenic in rabbits as well as in rhesus monkeys (Macaca mulatta). The chimeric protein induced both anti-MSP1-19 and anti-AMA-1(III) Abs at levels 11- and 18-fold higher, respectively, than individual components did. Anti-PfCP-2.9 sera from both rabbits and rhesus monkeys almost completely inhibited in vitro growth of the P. falciparum FCC1/HN and 3D7 lines when tested at a 6.7-fold dilution. It was shown that the inhibition is dependent on the presence of Abs to the chimeric protein and their disulfide bond-dependent conformations. Moreover, the activity was mediated by a combination of growth-inhibitory Abs generated by the individual MSP1-19 and AMA-1(III) of PfCP-2.9. The combination of the extremely high yield of the protein and enhancement of its immune response provides a basis to develop an effective and affordable malaria vaccine.  相似文献   

7.
Hyperimmunization with Plasmodium falciparum MSP1-42 could induce antibodies that have little or no parasite growth inhibitory activities. These antisera had no blocking activities as determined by their ability to interfere with the in vitro activities of growth inhibitory anti-MSP1-42 sera. Equally important, they enhanced the potency of growth inhibitory anti-MSP1-42 sera.  相似文献   

8.
Aotus trivirgatus monkeys with prior experience with Plasmodium vivax were inoculated with P. falciparum via the bites of infected mosquitoes. The animals with prior malaria had higher parasitemias and significantly higher levels of mosquito infectivity than monkeys with no prior P. vivax experience. Monkeys with a history of P. falciparum that were inoculated with P. vivax had essentially the same parasitemias as those with no prior malaria. However, levels of mosquito infectivity were markedly increased in those monkeys with a history of P. falciparum. The results imply that the introduction of another malaria species into a malarious area may result in higher levels of mosquito infection and more rapid establishment and distribution of that species.  相似文献   

9.
Nine Saimiri sciureus boliviensis monkeys were inoculated with sporozoites of Plasmodium vivax (Chesson strain) dissected from Anopheles stephensi mosquitoes infected by feeding on blood from infected chimpanzees. The animals were splenectomized 7 days after inoculation. Seven animals developed infections with prepatent periods ranging from 12 to 43 days (mean of 19.6 days). Parasitemias were low during the first 50 days. Maximum parasitemias in 5 animals in which the strain adapted ranged from 10,000 to 46,800 per mm3. Anopheles freeborni mosquitoes were infected by feeding on 4 of the monkeys.  相似文献   

10.
Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.  相似文献   

11.
Aotus nancymai (karyotype I) monkeys from Peru were studied for their susceptibility to infection with Plasmodium falciparum, P. vivax, and P. malariae. Three strains of P. falciparum (Santa Lucia from El Salvador, Indochina I/CDC from Thailand, and Uganda Palo Alto) were inoculated into 38 monkeys. The results indicated that this species of Aotus monkey is highly susceptible to infection. The Uganda Palo Alto and the Santa Lucia strain parasites appear to be the most useful for immunologic and chemotherapeutic studies. Five strains of P. vivax (Chesson, ONG, Vietnam Palo Alto, Salvador I, and Honduran I/CDC) were inoculated into 28 monkeys. The Vietnam Palo Alto strain produced the highest level parasitemias ranging from 23,800 to 157,000/mm3. Mosquito infections were obtained with the ONG, Chesson, and Salvador I strains. Two out of 6 attempts to transmit P. vivax via sporozoite inoculation to splenectomized monkeys were successful with prepatent periods of 39 and 57 days. Five monkeys were infected with the Uganda I/CDC strain of P. malariae. Maximum parasitemias ranged from 10 to 5,390/mm3.  相似文献   

12.
13.
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.  相似文献   

14.
P30P2MSP1(19) is a recombinant subunit vaccine derived from merozoite surface protein 1 (MSP1) of Plasmodium falciparum, the causative agent of malaria. P30P2MSP1(19) consists of two universal T-cell epitopes fused to the most C-terminal 19-kDa portion of MSP1, and this protein has previously shown promising potential as a vaccine for malaria. However, previous attempts at producing this molecule in Saccharomyces cerevisiae resulted in the production of a truncated form of the molecule missing most of the universal T-cell epitopes. Here, we report the production of full-length P30P2MSP1(19) in Pichia pastoris. As salt precipitation is a common problem during P. pastoris high-density fermentation, we utilized an alternative low-salt, fully defined medium that did not reduce growth rates or biomass yields to avoid precipitation. A total of 500 mg/L of secreted purified protein was produced in high cell density fermentation and the protein was purified in one step utilizing nickel-chelate chromatography. P30P2MSP1(19) produced in Pichia was reactive with monoclonal antibodies that recognize only conformational epitopes on correctly folded MSP1. Rabbits immunized with this molecule generated higher and more uniform antibody titers than rabbits immunized with the protein produced in Saccharomyces. P30P2MSP1(19) produced in Pichia may prove to be a more efficacious vaccine than that produced in Saccharomyces and Pichia would provide a system for the cost-effective production of such a vaccine.  相似文献   

15.
The Sal I strain of Plasmodium vivax was successfully adapted to three phenotypes of the squirrel monkey, Saimiri sciureus. Through five linear blood passages, parasitemias in excess of 200,000/mm3 blood were attained; Bolivian phenotype Saimiri appear to develop higher peak parasitemias. Sporozoites of the Sal I strain inoculated intravenously produced patent parasitemias in all five squirrel monkeys challenged, with prepatent periods ranging from 21 to 38 days. Anopheles freeborni and An. gambiae were the most susceptible of eight anopheline species fed on infected squirrel monkeys. As a model for in vivo studies of P. vivax the Sal I strain in Saimiri has great potential.  相似文献   

16.
Although several malaria vaccine candidate antigens have been identified, the most suitable methods for their delivery are still being investigated. In this regard, direct immunization with DNA encoding these vaccine target antigens is an attractive alternative. Here, we have investigated the immune responses to DNA immunization with three major vaccine target antigens: the apical membrane antigen-1 and the 19-kDa C-terminal fragment of merozoite surface protein-1 from the erythrocytic stage, and the thrombospondin-related adhesive protein from the pre-erythrocytic stage of Plasmodium cynomolgi in rhesus monkeys. Antigen-specific antibodies were developed in all the immunized monkeys and peripheral blood mononuclear cells from all immunized monkeys proliferated to different extents upon in vitro stimulation with the corresponding recombinant proteins. The immunized monkeys were challenged with P. cynomolgi sporozoites. All of the immunized animals developed infection but although there was no significant difference between the control and vaccinated animals in terms of pre-patent period, total duration of patency and primary peak parasitemia, the vaccinated animals had significantly lower secondary peak parasitemia than the control animals.  相似文献   

17.
Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP142) is further cleaved to a 33-kDa N-terminal polypeptide (MSP133) and an 19-kDa C-terminal fragment (MSP119) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP142 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P. falciparum MSP142 (Kd = 0.2 microM) and to Plasmodium vivax MSP142 (Kd = 0.3 microM) as measured by fluorescence enhancement in the presence of the protein and by isothermal titration calorimetry. Suramin bound only slightly less tightly to the P. vivax MSP133 (Kd = 1.5 microM) secondary processing product (fluorescence measurements), but very weakly to MSP119 (Kd approximately 15 mM) (NMR measurements). Several residues in MSP119 were implicated in the interaction with suramin using NMR measurements. A series of symmetrical suramin analogues that differ in the number of aromatic rings and substitution patterns of the terminal naphthylamine groups was examined in invasion and processing assays. Two classes of analogue with either two or four bridging rings were found to be active in both assays, whereas two other classes without bridging rings were inactive. We propose that suramin and related compounds inhibit erythrocyte invasion by binding to MSP1 and by preventing its cleavage by the secondary processing protease. The results indicate that enzymatic events during invasion are suitable targets for drug development and validate the novel concept of an inhibitor binding to a macromolecular substrate to prevent its proteolysis by a protease.  相似文献   

18.
The relationship among geographic origin, phenotype, karyotype, and susceptibility of owl monkeys to 2 strains of Plasmodium falciparum was investigated. Owl monkeys from Columbia and Panama were both susceptible to fatal infections with the Asian FVO (Vietnam-Oak Knoll) strain of P. falciparum. However, when inoculated with the African FUP (Uganda-Palo Alto) strain, most Colombian owl monkeys developed fatal or potentially fatal (bled out with parasitemias of over 25%) infections, but Panamanian monkeys generally survived. Colombian and Panamanian monkeys that spontaneously recovered from malaria infection were phenotypically indistinguishable from those which died. Karyotype analysis revealed that animals considered in this study were either Karyotype II (54 chromosomes) or II (53 chromosomes). Karyotype differences between individual monkeys did not correlate with increased susceptibility or resistance to malaria. Thus, the country of origin of owl monkeys appears to play a more important role in host susceptibility to malaria infection than karyotype.  相似文献   

19.
The antibody levels against the C-terminal region of the merozoite surface protein 1 of Plasmodium vivax (PvMSP1c) were measured in 276 patients with P. vivax malaria (patient group), 320 malaria-na?ve healthy individuals (control group 1), and 70 malaria-na?ve individuals with various disorders (control group 2) using the immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the direct sandwich ELISA. To evaluate the antibody response during relapse, 5 relapsed patients were tested using the IgM capture ELISA. The IgM antibodies were negative in 99.7% of control group 1 and in 100% of control group 2; they were positive in 90.6% of the patient group. The total antibody levels were positive in 88.4% of the patient group with the direct sandwich ELISA. The sera from the second malaria episode, i.e., relapsed patients, were 100% positive on the IgM capture ELISA. The results of this study suggest that the IgM capture ELISA may be a useful diagnostic method for P. vivax malaria for both primary infection and relapse.  相似文献   

20.
The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号