首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.  相似文献   

2.
Polypeptide elongation factor Tu from Halobacterium marismortui   总被引:1,自引:0,他引:1  
A GDP-binding protein of 60 kDa from Halobacterium marismortui has been purified to homogeneity. The purification has been carried out in high-salt buffers or in 50% glycerol buffers to protect the halophilic protein from denaturation. Evidence that this protein is the halophilic elongation factor Tu (hEF-Tu) is provided by the high homology of its N terminus with the corresponding sequences of other EF-Tus, and by immunological studies. Like some other EF-Tus the native protein can be cleaved with trypsin without concomitant loss of GDP-binding ability. The molecular mass of this hEF-Tu is higher than that for the corresponding factors from other sources including the halobacterium Halobacterium cutirubrum. The protein possesses typical halophilic characteristics, in that it is stable and active in 3 M KCl or 2 M (NH4)2SO4. Some other properties, like autofragmentation under sample treatment before SDS-PAGE, are described.  相似文献   

3.
The primary structure of the gene for the elongation factor EF-Tu from the halophilic archaebacterium Halobacterium marismortui (hEF-Tu) is described. It is the first gene of a halophilic elongation factor EF-Tu to be sequenced. When the sequence of hEF-Tu is compared to that of homologous proteins from other organisms, the highest identity (61%) is found with EF-Tu from Methanococcus vannielii, a non-halophilic archaebacterium. In the search for halophilic characteristics therefore the most appropriate comparison is with the M. vannielii sequence. The excess of acidic amino acid residues in the hEF-Tu sequence (already observed in the composition of other halophilic proteins) results to a large extent from changes of Lys, Asn or Gln to Asp or Glu. A structural analysis algorithm applied to the halophilic sequence places these acidic residues on the surface of the protein. The corresponding residues in the crystal structure of the first domain of EF-Tu from E. coli (the only EF-Tu structure available) are grouped in patches on the protein surface, in each of which several residues that may be far apart in the sequence come quite close to each other in the tertiary structure.  相似文献   

4.
We have stably transformed both Haloarcula vallismortis and Haloarcula hispanica with the halobacterium-Escherichia coli shuttle vectors pWL102 (based on the Haloferax volcanii pHV2 replicon) and pUBP2 (based on the Halobacterium halobium pHH1 replicon). Haloferax volcanii, Halobacterium halobium, and Haloarcula vailismortis are equally distant from one another and span the phylogenetic depth of the halophilic Archaea; thus, these vectors may be generally useful for the halophiles. Both Haloarcula vallismortis and Haloarcula hispanica exhibit previously unreported complex life cycles and are therefore significant as genetically approachable models of cellular differentiation within the Archaea.  相似文献   

5.
The extremely halophilic bacterium (formerly designated as strain J.F. 54) isolated from salt pools of the Death Valley, California, is a motile, Gram-negative, extremely pleomorphic organism, aerobe, and facultative anaerobe. A variety of carbohydrates are assimilated with or without acid production; soluble starch is hydrolyzed. The organism is not proteolytic; catalase, oxidase, and DNase reactions are positive; Tween 20 is slightly hydrolyzed, but Tweens 40, 60, and 80 are not. Nitrates are reduced to nitrites with gas production; nitrites are not reduced. Optimum growth temperature is 40 degrees C. Growth is inhibited by bacitracin and by novobiocin. The type strain J.F. 54 differs from described species of the genus Halobacterium and is assigned to a new species, Halobacterium vallismortis sp. nov.  相似文献   

6.
Characterization of plasmids in halobacteria.   总被引:19,自引:7,他引:12       下载免费PDF全文
Extrachromosomal, covalently closed circular deoxyribonucleic acid has been isolated from different species of halobacteria. Three strains of Halobacterium halobium and one of Halobacterium cutirubrum, all of which synthesize purple membrane (Pum+) and bacterioruberin (Rub+), contain plasmids of different size which share extensive sequence homologies. One strain of Halobacterium salinarium, another one of Halobacterium capanicum, and two new Halobacterium isolates from Tunisia, which are also Pum+ Rub+, do not harbor covalently closed circular deoxyribonucleic acid but contain sequences, presumably integrated into the chromosome, which are similar if not identical to those of pHH1, i.e., the plasmid originally isolated from H. halobium. Three other halophilic strains, Halobacterium trapanicum, Halobacterium volcanii, and a new isolate from Israel, do not carry pHH1-like sequences. These strains are, by morphological and physiological criteria, different from the others examined and harbor plasmids unrelated to pHH1.  相似文献   

7.
The halophilic archaebacterium Halobacterium strain GRB harbours a multicopy plasmid of 1.7 kb which is negatively supercoiled. After addition of novobiocin to culture medium all 1.7 kb plasmid molecules become positively supercoiled. Positive supercoiling occurs at the same dose of novobiocin inhibiting the eubacterial DNA gyrase in vitro. Novobiocin also induces positive supercoiling of pHV2, a 6.3 kb plasmid from Halobacterium volcanii. These results indicate the existence of a mechanism producing positive superturns in halobacteria. The 1.7 kb plasmid from Halobacterium GRB could be used to produce high amounts of pure positively supercoiled DNA for biophysical and biochemical studies.  相似文献   

8.
The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.  相似文献   

9.
A halophilic bacterium was isolated from bottom sediment from the Dead Sea. The organism possessed the properties of the halobacteria, but differed from the known species in two important respects, 1) the cells were disc shaped and often cupped when grown under optimum conditions, 2) the optimum requirements for sodium chloride was in the range 1.7--2.5 molar which is about half of that generally reported for the halobacteria. The organism was assigned to the genus Halobacterium and described as Halobacterium volcanni spec. rov. The optimum sodium chloride concentration for growth was close to that found in the Dead Sea. The tolerance for magnesium chloride was very high; the organism grew well in media containing magnesium chloride in the concentrations found in the Dead Sea. Halobacterium volcanii is therefore remarkably well fitted for life in the Dead Sea.  相似文献   

10.
G Weidinger  G Klotz  W Goebel 《Plasmid》1979,2(3):377-386
A large plasmid with a molecular weight of 100 × 106 has been found in Halobacterium halobium which is indistinguishable from the previously described “satellite DNA.” In this halophilic bacterium characteristic properties such as the biosyntheses of gas vacuoles, purple membrane, and ruberin are spontaneously lost at high frequencies. These phenotypic alterations are accompanied by a change in the nucleotide sequence of the plasmid DNA. In plasmids of vacuole-deficient mutants two distinct PstI fragments in the restriction pattern are altered probably by an insertion of 3600 base pairs into the DNA. In revenants which form gas vacuoles the original sequence of the plasmid DNA is restored. This indicates that the presence of the plasmid is related to the gas vacuole formation.  相似文献   

11.
DNA nucleotide composition was studied in extreme halophilic bacteria belonging to the genera Halobacterium, Halococcus, Natronobacterium and Natronococcus. The cultures were shown to be a monolithic group of microorganisms with the content of GC pairs typical of extreme halophilic archebacteria. The difference between the content of DNA major and minor components was twice as high in Halobacterium distributus strains isolated from sulfate saline soils as compared to cultures of this species isolated from natural waters with a high salinity. DNA minor components were not found in haloalkalophilic microorganisms from soda saline soils in contrast to those from soda lakes. The results of DNA-DNA hybridization indicate that the Halobacterium genus is highly heterogeneous. The newly isolated strains of extremely halophilic H. distributus are characterized by the low homology of their DNAs both among themselves and with other species of the genus. However, the hybridization data for the collection strains H. vallismortis 1398 and H. halobium 996 from the National Collection of Microorganisms are indicative of a high homology (80-100%) which is not characteristic of cultures belonging to different species. These results as well as some phenotypical properties of H. vallismortis 1398 different from those of this species type strain support the data reported in the literature about the genetic instability of extreme halophilic archebacteria. The analysis of homologies in DNA nucleotide sequences may be used to study the taxonomy of extreme halophilic archebacteria.  相似文献   

12.
Growth responses of the halophilic bacteria, Halobacterium sp. strain HB9 and Halobacterium salinarium strain CM42/12, to temperature and water activity/sodium chloride concentration were described by the square root model and T min (the theoretical minimum temperature for growth) was fixed. Little change in growth rate was observed in response to added NaCl at water activities below which cell lysis was avoided. Hence, growth of halobacteria on products such as salted, dried fish at water activities below 0.85 may be based on the square root temperature response without the need to incorporate a water activity term.  相似文献   

13.
Abstract A constitutive NAD+-dependent glycerol dehydrogenase activity was detected in Halobacterium salinarium and Halobacterium cutirubrum . Optimal activity was found at 3 M KCl and pH 8–10. No glycerol dehydrogenase activity could be demonstrated in representatives of the genera Haloferax and Haloarcula , even when grown in the presence of glycerol, or in Halobacterium saccharovorum and Halobacterium sodomense . Glycerol kinase activity was shown to be present constitutively in all halophilic archaea examined. The finding that glycerol dehydrogenase is found only in part of the halophilic arachaea makes dihydroxyacetone an improbable candidate as the precursor for the glycerol moiety of halobacterial lipids.  相似文献   

14.
alpha-like and beta-like DNA polymerases have previously been isolated from a halophilic archaebacterium Halobacterium halobium. In this report, we show that the alpha-like DNA polymerase has an associated 3' to 5'-exonuclease activity which is specific for single-stranded DNA, sensitive to both aphidicolin and N-ethylmaleimide and dependent on high salt concentrations like the polymerase activity. As this DNA polymerase has been shown to contain a primase activity, it may be considered as the equivalent to both eukaryotic DNA polymerases alpha and delta. As shown by glycerol-gradient centrifugation and electrophoresis under denaturing conditions, the beta-like polymerase would appear to have a monomeric structure and comprise of a single 65-kDa polypeptide. This DNA polymerase has both 3' to 5'-exonuclease and 5' to 3'-exonuclease activities which, contrary to polymerase activity, are inhibited by high salt concentrations.  相似文献   

15.
A halophilic bacterium was isolated from bottom sediment from the Dead Sea. The organism possessed the properties of the halobacteria, but differed from the known species in two important respects, 1) the cells were disc-shaped and often cupped when grown under optimum conditions, 2) the optimum requirements for sodium chloride was in the range 1.7–2.5 molar which is about half of that generally reported for the halobacteria. The organism was assigned to the genus Halobacterium and described as Halobacterium volcanii spec.nov. The optimum sodium chloride concentration for growth was close to that found in the Dead Sea. The tolerance for magnesium chloride was very high; the organism grew well in media containing magnesium chloride in the concentrations found in the Dead Sea. Halobacterium volcanii is therefore remarkably well fitted for life in the Dead Sea.  相似文献   

16.
Auxotrophic mutants of Halobacterium volcanii generated by chemical mutagenesis were used to demonstrate a native genetic transfer system in this extremely halophilic member of the class Archaeobacteria.  相似文献   

17.
18.
To study the molecular biology of the halophilic archaebacterium Halobacterium halobium, the introduction of DNA engineered in vitro is desirable. As a first step in developing a cloning vector, the complete 1736 base pair nucleotide sequence of the natural, high copy number, Halobacterium plasmid pHSB1 has been determined. The plasmid was found to show homology to the small plasmids of Halobacterium strains GRB and GN101. Plasmid pHSB1 encodes a 317 amino acid protein of unknown function. The related halophile, H. halobium, could be transformed by pHSB1, demonstrating its utility as the basis of a cloning vector.  相似文献   

19.
Aphidicolin, a specific inhibitor of eucaryotic alpha DNA polymerase, inhibits the growth of halophilic arachaebacteria. In Halobacterium halobium, aphidicolin prevents cell division and DNA synthesis. These results suggest that arachaebacterial replicases are of the eucaryotic type.  相似文献   

20.
The genome of the halophilic archaeon Halobacterium sp. strain NRC-1 encodes homologs of the eukaryotic Mre11 and Rad50 proteins, which are involved in the recognition and end processing of DNA double-strand breaks in the homologous recombination repair pathway. We have analyzed the phenotype of Halobacterium deletion mutants lacking mre11 and/or rad50 after exposure to UV-C radiation, an alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), and gamma radiation, none of which resulted in a decrease in survival of the mutant strains compared to that of the background strain. However, a decreased rate of repair of DNA double-strand breaks in strains lacking the mre11 gene was observed using pulsed-field gel electrophoresis. These observations led to the hypothesis that Mre11 is essential for the repair of DNA double-strand breaks in Halobacterium, whereas Rad50 is dispensable. This is the first identification of a Rad50-independent function for the Mre11 protein, and it represents a shift in the Archaea away from the eukaryotic model of homologous recombination repair of DNA double-strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号