首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

3.
ABSTRACT

Awa-bancha is a post-fermented tea produced in Naka and Kamikatsu, Tokushima, Japan. We investigated the lactic acid bacteria in each stage of production of Awa-bancha and evaluated the relationships with the components. Lactic acid bacteria were isolated from tea leaves cultured with de Man, Rogosa, and Sharpe (MRS) agar plates, and the species were identified by homology of the 16 S rRNA gene and multiplex polymerase chain reaction (PCR) of the recA gene to distinguish the Lactobacillus plantarum group. As a result, a variety of species were isolated from the raw tea leaves, and Lactobacillus pentosus was isolated most frequently after anaerobic fermentation. Regarding the tea leaf components, organic acids, such as lactic acid, increased, free amino acids decreased, and catechins changed owing to anaerobic fermentation. Our results suggest that the microbial flora mainly composed of L. pentosus is important in the anaerobic fermentation process for flavor formation of Awa-bancha.  相似文献   

4.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

5.
Lactobacillus plantarum and Lactobacillus pentosus grouped into one protein profile cluster at r ≥ 0.70, separate from Lactobacillus casei, Lactobacillus sake, and Lactobacillus curvatus. Similar sugar fermentation reactions were recorded for representative strains of L. plantarum and L. pentosus. Representative strains, including the type of each species, were selected from the different protein profile clusters and their genetic relatedness determined by using numerical analysis of random amplified polymorphic DNA (RAPD)-PCR. The type strains of L. plantarum (ATCC 14917T) and L. pentosus (NCFB 363T) displayed different RAPD profiles and grouped into two independent clusters, well separated from L. casei, L. curvatus, and L. sake. Numerical analysis of RAPD-PCR proved a reliable and accurate method to distinguish between strains of L. plantarum and L. pentosus.  相似文献   

6.
The microbiota of lactic acid bacteria (LAB) in thirty-five samples of Miang, a traditional fermented tea leaf product, collected from twenty-two different regions of eight provinces in upper northern Thailand was revealed through the culture-dependent technique. A total of 311 presumptive LAB strains were isolated and subjected to clustering analysis based on repetitive genomic element-PCR (rep-PCR) fingerprinting profiles. The majority of the strains belonged to the Lactobacillus genera with an overwhelming predominance of the Lb. plantarum group. Further studies of species-specific PCR showed that 201 of 252 isolates in the Lb. plantarum group were Lb. plantarum which were thus considered as the predominant LAB in Miang, while the other 51 isolates belonged to Lb. pentosus. In contrast to Lb. plantarum, there is a lack of information on the tannase gene and the tea tannin-tolerant ability of Lb. pentosus. Of the 51 Lb. pentosus isolates, 33 were found to harbor the genes encoding tannase and shared 93-99% amino acid identity with tannase obtained from Lb. pentosus ATCC 8041T. Among 33 tannase gene-positive isolates, 23 isolates exhibited high tannin- tolerant capabilities when cultivated on de Man Rogosa and Sharpe agar-containing bromocresol purple (0.02 g/L, MRS-BCP) supplemented with 20% (v/v) crude tea extract, which corresponded to 2.5% (w/v) tannins. These Lb. pentosus isolates with high tannin-tolerant capacity are expected to be the high potential strains for functional tannase production involved in Miang fermentation as they will bring about certain benefits and could be used to improve the fermentation of tea products.  相似文献   

7.
Culture-based technique was used to study the population dynamics of the bacteria and determine the dominant lactic acid bacteria (LAB) during cassava fermentation. LAB was consistently isolated from the fermented mash with an initial viable count of 6.00 log c.f.u. g−1 observed at 12 h. The aerobic viable count of amylolytic lactic acid bacteria (ALAB) was higher than other group of LAB throughout the fermentation up to 96 h with the highest viable count of 8.08 log c.f.u. g−1. Combination of phenotypic parameters and 16S rDNA gene sequencing identified the dominant group of LAB as Lactobacillus plantarum, L. fermentum and Leuconostoc mesenteroides while the pulse field gel electrophoresis determined that the strains were genotypically heterogeneous. The sugar fermentation profile of the isolates showed that indigestible sugars such as raffinose and stachyose can be fermented by the strains. Information was also generated about the functional properties of the strains. Only strain L. plantarum 9st0 isolate at 0 h of the fermentation produced bacteriocin with antagonism against closely related indicator strains. Quantitatively, the highest amylase activity was produced by strain L. plantarum 7st12, while appreciable amylase was also produced by L. fermentum 1st96. The result of this work showed that selection of mixed starter cultures of bacteriocin- and amylase-producing L. plantarum and L. fermentum will be highly relevant as starter cultures during the intermediate and large scale gari production.  相似文献   

8.
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO2. We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO2 requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.  相似文献   

9.
A total of 41 strains of lactic acid bacteria (LAB) isolated from durum wheat sourdoughs used to produce Cornetto di Matera bread, were identified by SDS-PAGE of whole cell proteins (WCP) and screened for acid production ability, antimicrobial activity and exopolysaccharide (EPS) production. The isolates were identified as Lactobacillus plantarum (49%), Leuconostoc mesenteroides (17%), Lactobacillus curvatus (15%), Lactobacillus paraplantarum (12%), Weissella cibaria (5%) and Lactobacillus pentosus (2%). Several strains of Lb. plantarum and Leuc. mesenteroides showed a high acid production ability. The antagonistic activity was tested using an agar-spot deferred antagonism assay against a set of five indicators. The species had different profiles of inhibition. Lb. plantarum had the largest spectrum of inhibition, while no isolates of W. cibaria and Leuc. mesenteroides showed antimicrobial activity. No strains had antimicrobial activity against Bacillus cereus. The inhibitory activity of five strains was confirmed to be sensitive to proteolytic enzymes and thus potentially due to bacteriocin production. All Leuc. mesenteroides and W. cibaria strains produced EPS from sucrose. Some Lb. plantarum and Lb. paraplantarum strains produced EPS from different sugars in solid media. EPS production in liquid media was different within the species, with the highest production in liquid media containing glucose and maltose. A defined strain starter culture (W. cibaria DBPZ1006, Lb. plantarum DBPZ1015 and S. cerevisiae MTG10) was selected on the basis of technological properties and tested in model sourdough fermentations.  相似文献   

10.
Real-time polymerase chain reaction (RT-PCR) was used to quantify seven species of lactic acid bacteria (LAB) in alfalfa silage prepared in the presence or absence of four commercial inoculants and in uninoculated corn stover harvested and stored under a variety of field conditions. Species-specific PCR primers were designed based on recA gene sequences. Commercial inoculants improved the quality of alfalfa silage, but species corresponding to those in the inoculants displayed variations in persistence over the next 96 h. Lactobacillus brevis was the most abundant LAB (12 to 32% of total sample DNA) in all of the alfalfa silages by 96 h. Modest populations (up to 10%) of Lactobacillus plantarum were also observed in inoculated silages. Pediococcus pentosaceus populations increased over time but did not exceed 2% of the total. Small populations (0.1 to 1%) of Lactobacillus buchneri and Lactococcus lactis were observed in all silages, while Lactobacillus pentosus and Enterococcus faecium were near or below detection limits. Corn stover generally displayed higher populations of L. plantarum and L. brevis and lower populations of other LAB species. The data illustrate the utility of RT-PCR for quantifying individual species of LAB in conserved forages prepared under a wide variety of conditions.Disclaimer: Mention of products is for informational purposes only and does not imply a recommendation or warranty by USDA over other products that may also be suitable  相似文献   

11.
One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality.  相似文献   

12.
The aim of this article was to analyze the ability of wine Lactobacillus plantarum strains to form tyramine. Preliminary identification of L. plantarum strains was performed by amplification of the recA gene. Primers pREV and PlanF, ParaF and PentF were used respectively as reverse and forward primers in the polymerase chain reaction tests as previously reported. Furthermore, the gene encoding for the tyrosine decarboxylase (TDC) was partially cloned from one strain identified as L. plantarum. The strain was further analyzed by 16S rDNA sequence and confirmed as belonging to L. plantarum species. The tyrosine decarboxylase activity was investigated and tyramine was determined by the high-performance liquid chromatography method. Moreover, a negative effect of sugars such as glucose and fructose and L-malic acid on tyrosine decarboxylase activity was observed. The results suggest that, occasionally, L. plantarum is able to produce tyramine in wine and this ability is apparently confined only to L. plantarum strains harboring the tdc gene.  相似文献   

13.
Aims: The objective of this study was to investigate the presence of genes coding for enzymes of oenological relevance in wine Lactobacillus strains isolated from South African grape and wine samples during the 2001 and 2002 harvest seasons. Methods and Results: A total of 120 wine lactobacilli isolates belonging to Lactobacillus plantarum, Lactobacillus hilgardii, Lactobacillus brevis, Lactobacillus pentosus, Lactobacillus paracasei, Lactobacillus sakei and Lactobacillus paraplantarum were genetically screened for enzyme‐encoding genes using PCR with primers specific for β‐glucosidase, protease, esterase, citrate lyase and phenolic acid decarboxylase. The results of PCR screening showed that the Lactobacillus strains possessed different combinations of enzymes and that some strains did not possess any of the enzymes tested. Confirmation analysis with gene sequencing also showed high similarity of genes with those available in GenBank database. Conclusion: In this study, we have demonstrated the existence of genes coding for wine‐related enzymes in wine lactobacilli that could potentially hydrolyse wine precursors to positively influence wine aroma. Significance and Impact of the Study: An expansion of knowledge on the genetic diversity of wine‐associated lactic acid bacteria will enable the selection of novel malolactic fermentation starter cultures with desired oenological traits for the improvement of the organoleptic quality of the wine, and hence wine aroma.  相似文献   

14.
'Urutan' is a Balinese traditional fermented sausage, which is made of lean pork and fat mixed with spices, sugar, and salt. The mixture is stuffed into cleaned pig intestine and fermented under uncontrolled condition during sun drying for 5 days. The investigation showed that lactic acid bacteria (LAB) were the dominating bacteria during 'urutan' fermentation. Among the 71 isolates obtained, lactobacilli dominated by 77.5% and the other 22.5% were pediococci. Based on physiological characteristics, the isolates were classified into 13 groups: nine belonged to the lactobacilli and the other four were pediococci. One isolate representing each group was chosen randomly, and then was identified by 16S rDNA sequence comparison. Phylogenetic relationship positioned three groups to Lactobacillus plantarum and four groups were closely related to L. farciminis. Two groups were identified as obligate heterofermentative lactobacilli: one was L. fermentum and the other was distantly related to L. hilgardii. Two groups belonging to the pediococci were strains of Pediococcus acidilactici and the other two were closely related to P. pentosaceus. A dramatic succession occurred during fermentation of 'urutan'. Three species mainly dominated the process wherein the initial growth was started by L. plantarum then followed by the growth of P. acidilactici, and finally, L. farciminis was found to be predominant at the last stage of fermentation.  相似文献   

15.
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.  相似文献   

16.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

17.
Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species.  相似文献   

18.
The fermentation of cocoa relies on a complex succession of bacteria and filamentous fungi, all of which can have an impact on cocoa flavor. So far, few investigations have focused on the diversity of lactic acid bacteria involved in cocoa fermentation, and many earlier investigations did not rely on polyphasic taxonomical approaches, which take both phenotypic and genotypic characterization techniques into account. In our study, we characterized predominant lactic acid bacteria from cocoa fermentations in Nigeria, using a combination of phenotypic tests, repetitive extragenic palindromic PCR, and sequencing of the 16S rRNA gene of representative strains for accurate species identification. Thus, of a total of 193 lactic acid bacteria (LAB) strains isolated from common media used to cultivate LAB, 40 (20.7%) were heterofermentative and consisted of either L. brevis or L. fermentum strains. The majority of the isolates were homofermentative rods (110 strains; 57% of isolates) which were characterized as L. plantarum strains. The homofermentative cocci consisted predominantly of 35 (18.1% of isolates) Pediococcus acidilactici strains. Thus, the LAB populations derived from these media in this study were accurately described. This can contribute to the further assessment of the effect of common LAB strains on the flavor characteristics of fermenting cocoa in further studies.  相似文献   

19.
The present study was aimed to investigate the nutritive profiles, microbial counts and fermentation metabolites in rye, Italian rye-grass (IRG) and barley supplemented with Lactobacillus plantarum under the field condition, and its probiotic properties. After preparation of silage, the content of crude protein (CP), crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF), microbes such as lactic acid bacteria (LAB), yeast and fungi counts, and fermentation metabolites lactic acid, acetic acid and butyric acid was assessed. Results indicated that the content of ADF and NDF were significantly varied between rye, IRG and barley mediated silages. The content of CP was increased in L. plantarum supplemented with IRG, but slightly decreased in rye and barley mediated silages. The maximum LAB count was recorded at 53.10 × 107 cfu/g in rye, 16.18 × 107 cfu/g in IRG and 2.63 × 107 cfu/g in barley silages respectively. A considerable number of the yeasts were observed in the IRG silages than the rye silages (P < 0.05). The amount of lactic acid production is higher in L. plantarum supplemented silages as compared with control samples (P < 0.05). It was confirmed that higher amount of lactic acid produced only due to more number of LAB found in the silages. L. plantarum was able to survive at low pH and bile salt and the duodenum passage with the highest percentage of hydrophobicity. Furthermore, the strain was sensitive towards the antibiotics commonly used to maintain the microbes in food industrial setups. In conclusion, supplementation of L. plantarum is most beneficial in rye, IRG and barley silage preparations and probiotic characteristics of L. plantarum was an intrinsic feature for the application in the preparation of animal feeds and functional foods.  相似文献   

20.
Aims of the study were to characterize two Lactobacillus plantarum-related strains, Lact. plantarum and Lactobacillus paraplantarum isolated from fermented vegetables and, for their potential use as starter strains, compare their growth in various food matrices. Species-level identification of the strains belonging to the Lact. plantarum group was performed by multiplex-PCR with species-specific primers and generation of distinct genotypic profiles was carried out by PFGE-based DNA-fingerprinting. Growth profiles were determined in various food and feed matrices. Compared to Lact. plantarum, Lact. paraplantarum reached higher cell densities in all plant-based matrices and MRS broth. On the contrary to the good growth in plant-based matrices and MRS, poor growth was observed in unprocessed milk. Supplemented lactose did not improve the growth of either tested strain, while predigestion of milk proteins with Lactobacillus helveticus or addition of casitone proved to be an effective means to enhance growth. To find out the applicability of molecular methods, the strains were transformed with replicative plasmids by electroporation. To our knowledge, this is a first report of the electrotransformation of Lact. paraplantarum with a recombinant plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号