首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Aquatic Botany》1986,23(4):321-327
Plants grown from seeds of Sagittaria falcata, S. lancifolia, S. platyphylla, S. rigida, S. isoetiformis and S. papillosa were grown in water-saturated soil or soil submerged to 4.5, 12, 19.5 or 27 cm. Length and width of leaves and petiole lengths were measured at anthesis of the first flower on the first inflorescence produced by each plant. In general, leaf width and length were decreased by submergence, and petiole length increased. The species × water depth interaction was significant for emersed leaf width, leaf length and petiole length except for S. lancifolia leaf length and S. papillosa leaf length and width. These trends indicate genetic differences among, and variability within, taxa. Leaf width, leaf length and petiole length of plants growing in seed source populations were measured. The means from these measurements, when compared to those from experimental plants, indicate that both groups of plants respond similarly to variations in water depth.  相似文献   

2.
《Flora》2007,202(5):395-402
Petiole anatomy of the north-eastern Brazilian species Echinodorus glandulosus, E. palaefolius, E. pubescens, E. subalatus, E. lanceolatus and E. paniculatus were examined. All species had petioles with an epidermis composed of tabular cells with thin walls. The chlorenchyma just below the epidermis alternates with collateral vascular bundles. The interior of the petiole is filled by aerenchyma with ample open spaces or lacunas. The lacunas are bridged at intervals by plates, or by diaphragm-like linkages. There are lactiferous ducts and groups of fibres throughout the entire length of the petiole, but more frequently in the chlorenchyma. Important taxonomic characteristics for the genus Echinodorus include the shape and outline of the petiole in transversal section, the presence of winged extensions, and the number of vascular bundle arcs. Exceptions occur in E. lanceolatus and E. paniculatus, whose petioles have similar anatomic patterns. A comparative chart of the petiole anatomic characteristics analyzed is presented.  相似文献   

3.
Plant xyloglucans play an important role in the processes of cell wall extension, determine their mechanical properties, thus affecting growth and morphology of individual cells and whole organs. Being one of the main components of hemicellulose, xyloglucans play a particular physiological role in woody plants. To study xyloglucan physiological role, transgenic aspen (Populus tremula L.) plants with a recombinant sp-Xeg gene from the fungus Penicillium canescens were produced. Constitutive expression of this gene in the heterologous surrounding was confirmed by RT-PCR method. The analysis of protein extracts from the leaves of greenhouse-grown plants and microshoots grown in vitro showed activation of xylogluconase in transgenic lines. The strongest activation (1.6-fold) was observed in the leaf extracts (clone PtXVXeg1b) and in vitro microshoots (clone PtXVXeg1c). In transgenic plants, the relative content of pentosans in the wood was declined. In control plants (Pt genotype), it was equal to 148 mg/g dry wt, whereas in tested clones (PtXVXeg1a, PtXVXeg1b, and PtXVXeg1c), it varied from 100 to 140 mg/g dry wt. The strongest decrease (by 31%) in the content of pentosans was observed for the line PtXVXeg1c; the content was equal to 102.1 ± 1.5 mg/g dry wt. A comparative analysis of leaf morphology revealed an increase in the length of petiole and a decrease in the length of the main vein in transgenic lines. In control plants, the ratio of the petiole length to the length of the main vein was equal to 0.49, whereas in transgenic plants, it varied from 0.51 to 0.66. A significant increase of this index was observed in 12 from 14 transgenic lines.  相似文献   

4.
我国耳草属中具有茎四棱和头状花序特征的植物常常被鉴定为长节耳草(Hedyotis uncinella),并且这一名称还包括了基于不同模式的3个分类学异名。由于这一类植物在叶片形态、叶柄长短、花序着生式样以及花梗长度等形态特征方面存在着明显的不同,因此将这一类植物笼统地鉴定为长节耳草并不合理。为清晰区分这类植物,通过模式比对、居群形态特征变异式样的野外观察以及分子系统学分析等方法进行研究,结果表明,以前被鉴定为“长节耳草”的植物实际上包括了6个分类实体,即被归并的丰花耳草(H. borrerioides)、垦丁耳草(H. kuraruensis)和新组合种——团花耳草(H. cephalophora)均应独立成种,而长节耳草本种、被忽略的线叶耳草(H. linearifolia)和我国新记录种——球花耳草(H. multiglomerulata)各自也应得到承认。同时,为了便于进行分类鉴定,也提供了这些种类的分种检索表。  相似文献   

5.
Previous anatomical studies have been restricted to the foliar aspects of Pilocarpus. However, no anatomical studies analyzing the foliar aspects of Pilocarpus in relation to related genera have been carried out. Therefore, the aim of this study was to identify characters for future taxonomic and phylogenetic studies in Rutaceae, particularly in Pilocarpus, and to discuss the characteristics associated with the simple or compound leaf condition for the group. The petiole and the leaf blade of 14 neotropical Rutaceae species were analyzed, and the following characteristics were observed in all leaves studied: stomata on both surfaces; secretory cavities, including mesophyll type; camptodromous?Cbrochidodromous venation pattern; and free vascular cylinder in the basal region of the petiole. Additional promising characters were identified for future taxonomic and phylogenetic studies in the Rutaceae family, especially for the Pilocarpus genera.  相似文献   

6.
At present, many strawberry plants (Fragaria x ananassa Duch.) are cold-stored in autumn and replanted the next summer to provide good crops the following spring. These plants should be dormant (low growth potential) with abundant nutrient reserves (e.g. carbohydrates) to withstand storage. Because no rapid test was available to assess the induction of autumnal dormancy of strawberry plants, we have evaluated the level of relative nutrient deficiency of growth organs (correlative inhibition, one cause of dormancy) by intracellular pH measurements on Elsanta strawberry plants. To control the validity of this evaluation, carbohydrate accumulation in the storage parenchyma was measured and the dormancy level was estimated by measuring the petiole length of Elsanta plants under controlled conditions. The results showed that petiole length and intracellular pH of buds were low at the beginning of autumn, implying that the measurements of intracellular pH can be a marker of dormancy induction in strawberry plants. Then, in the middle of autumn, when the first changes occurred, growth inhibition remained even as the intracellular pH measurements implied a break of correlative inhibition. This should suggest that another growth inhibition remains after the first chilling.  相似文献   

7.

Background and Aims

Complete submergence is an important stress factor for many terrestrial plants, and a limited number of species have evolved mechanisms to deal with these conditions. Rumex palustris is one such species and manages to outgrow the water, and thus restore contact with the atmosphere, through upward leaf growth (hyponasty) followed by strongly enhanced petiole elongation. These responses are initiated by the gaseous plant hormone ethylene, which accumulates inside plants due to physical entrapment. This study aimed to investigate the kinetics of ethylene-induced leaf hyponasty and petiole elongation.

Methods

Leaf hyponasty and petiole elongation was studied using a computerized digital camera set-up followed by image analyses. Linear variable displacement transducers were used for fine resolution monitoring and measurement of petiole growth rates.

Key Results

We show that submergence-induced hyponastic growth and petiole elongation in R. palustris can be mimicked by exposing plants to ethylene. The petiole elongation response to ethylene is shown to depend on the initial angle of the petiole. When petiole angles were artificially kept at 0°, rather than the natural angle of 35°, ethylene could not induce enhanced petiole elongation. This is very similar to submergence studies and confirms the idea that there are endogenous, angle-dependent signals that influence the petiole elongation response to ethylene.

Conclusions

Our data suggest that submergence and ethylene-induced hyponastic growth and enhanced petiole elongation responses in R. palustris are largely similar. However, there are some differences that may relate to the complexity of the submergence treatment as compared with an ethylene treatment.  相似文献   

8.
Rhododendron kuomeianum Y.H. Chang, J. Nielsen & Y.P. Ma, a new species of Rhododendron (Ericaceae) within subsect. Maddenia in sect. Rhododendron from Yiliang County, NE Yunnan, China, is described and illustrated. The new species is similar to R. valentinianum, but it can be easily distinguished by its sparse scales on the abaxial surface of the leaf blade, fewer flowers per inflorescence and white corolla with pale red margins. There are also differences in the widths of calyx lobes, leaf blade shape and indumentum characteristics of the petiole between the new species and Rhododendron linearilobum. We confirmed that R. kuomeianum is a new species closely related to R. valentinianum and R. changii with phylogenomic studies of 10 species within this subsection based on restriction site-associated DNA sequencing (RAD-seq) data. These phylogenomic analyses also clarified additional taxonomic problems in this subsection previously raised by morphological analysis. Our findings make a strong case for using next-generation sequencing to explore phylogenetic relationships and identify new species, especially in plants groups with complicated taxonomic problems.  相似文献   

9.
Petiole growth in Thlaspi arvense L. was stimulated when a basic 8 hour photoperiod (4.20 milliwatts per square centimeter) was extended with low intensity light (0.16 milliwatt per square centimeter) from incandescent lamps. The day length extension was effective only when the light contained high proportions of far red light. Exogenous gibberellin A3 (GA3) could partially substitute for the promotive effect of the extended photoperiod. Moreover, the GA biosynthesis inhibitor 2-chlorocholine chloride inhibited the increase in petiole growth induced by the extended photoperiod. However, evidence was obtained indicating that gibberellins do not mediate the effect of the extended photoperiod. First, petiole growth was greater in plants receiving both exogenous GA3 and a day length extension than the sum of the effects of the two treatments alone. Second, petioles were sensitive to exogenous GA3 only during the early stages of leaf development, whereas mature (but not senescent) leaves continued to respond to an extension of the photoperiod. Third, the cellular basis for growth induced by extending the photoperiod was different from that observed with GA3. It was concluded that light and gibberellins are both important in the overall regulation of petiole growth, but act through independent mechanisms.  相似文献   

10.
High throughput phenotyping (phenomics) is a powerful tool for linking genes to their functions (see review1 and recent examples2-4). Leaves are the primary photosynthetic organ, and their size and shape vary developmentally and environmentally within a plant. For these reasons studies on leaf morphology require measurement of multiple parameters from numerous leaves, which is best done by semi-automated phenomics tools5,6. Canopy shade is an important environmental cue that affects plant architecture and life history; the suite of responses is collectively called the shade avoidance syndrome (SAS)7. Among SAS responses, shade induced leaf petiole elongation and changes in blade area are particularly useful as indices8. To date, leaf shape programs (e.g. SHAPE9, LAMINA10, LeafAnalyzer11, LEAFPROCESSOR12) can measure leaf outlines and categorize leaf shapes, but can not output petiole length. Lack of large-scale measurement systems of leaf petioles has inhibited phenomics approaches to SAS research. In this paper, we describe a newly developed ImageJ plugin, called LeafJ, which can rapidly measure petiole length and leaf blade parameters of the model plant Arabidopsis thaliana. For the occasional leaf that required manual correction of the petiole/leaf blade boundary we used a touch-screen tablet. Further, leaf cell shape and leaf cell numbers are important determinants of leaf size13. Separate from LeafJ we also present a protocol for using a touch-screen tablet for measuring cell shape, area, and size. Our leaf trait measurement system is not limited to shade-avoidance research and will accelerate leaf phenotyping of many mutants and screening plants by leaf phenotyping.  相似文献   

11.
Movement of [14C]kinetin and [14C]gibberellic acid was examined in cotton (Gossypium hirsutum L.) cotyledonary petiole sections independent of label uptake or exit from the tissue. Sections 20 millimeters in length were taken from well watered, stressed, and poststressed plants. Transport capacity was determined using a pulse-chase technique. Movement of both kinetin and gibberellic acid was found to be nonpolar with a velocity of 1 millimeter per hour or less, suggesting passive diffusion. Neither water stress nor anaerobic conditions during transport of labeled material affected the transport capacity of the petioles.  相似文献   

12.

Background and Aims

Plant species from various taxa ‘escape’ from low oxygen conditions associated with submergence by a suite of traits collectively called the low oxygen escape syndrome (LOES). The expression of these traits is associated with costs and benefits. Thus far, remarkably few studies have dealt with the expected benefits of the LOES.

Methods

Young plants were fully submerged at initial depths of 450 mm (deep) or 150–240 mm (shallow). Rumex palustris leaf tips emerged from the shallow flooding within a few days, whereas a slight lowering of shallow flooding was required to expose R. acetosa leaf tips to the atmosphere. Shoot biomass and petiole porosity were measured for all species, and treatments and data from the deep and shallow submergence treatments were compared with non-flooded controls.

Key Results

R. palustris is characterized by submergence-induced enhanced petiole elongation. R. acetosa lacked this growth response. Upon leaf tip emergence, R. palustris increased its biomass, whereas R. acetosa did not. Furthermore, petiole porosity in R. palustris was twice as high as in R. acetosa.

Conclusions

Leaf emergence restores gas exchange between roots and the atmosphere in R. palustris. This occurs to a much lesser extent in R. acetosa and is attributable to its lower petiole porosity and therefore limited internal gas transport. Leaf emergence resulting from fast petiole elongation appears to benefit biomass accumulation if these plants contain sufficient aerenchyma in petioles and roots to facilitate internal gas exchange.Key words: Submergence, emergence, enhanced shoot elongation, porosity, aerenchyma, Rumex, cost–benefit analysis, phenotypic plasticity  相似文献   

13.
An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2–3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their quantitative and qualitative improvements.  相似文献   

14.
Apical correlative effects in leaf epinasty of tomato   总被引:3,自引:1,他引:2       下载免费PDF全文
The influence of the stem apex on leaf curvature was investigated using debudded tomato (Lycopersicon esculentum Mill. cv Anahu) plants and petiole explants, consisting of a section of petiole attached to a section of stem.  相似文献   

15.
Palmer JH 《Plant physiology》1976,58(4):513-515
The effect of ethylene on the distribution of applied indoleacetic acid in the petiole of Coleus blumei Benth. X C. frederici G. Taylor has been investigated during the development of epinastic curvature. Using intact plants, 14C-IAA was applied to the distal region of the leaf lamina and the accumulation of label in the abaxial and adaxial halves of 5 mm petiole sections was determined after 1.5, 3, and 6 hours. Over this period the label was transported out of the lamina into the petiole at a rate of at least 66 mm hr−1. Of the total amount of label in the petiole sections, 24 to 30% was located in the adaxial half and this distribution was not altered significantly by exposing plants to an atmosphere containing 50 μl/l ethylene. Thus when epinastic curvature is induced by ethylene there is no associated increase in the IAA content of the expanding adaxial half. The role of endogenous IAA in petiole epinasty was studied by restricting its movement with DPX 1840 (3,3a-dihydro-2-[p-methoxyphenyl]-8H-pyrozolo{5,1-a}isoindol-8-one). The leaf petioles still showed an initial epinastic response to ethylene. It is concluded that ethylene-induced epinasty is not dependent upon either any change in the transport of IAA or its redistribution within the petiole.  相似文献   

16.
A total of 660 individual plants ofMalva parviflora, a medicinal plant in many countries, growing in two bioclimatic regions were randomly collected with the aim of examining the differences in the allometry of this herbaceous plant growing in two bioclimatic regions. Allometric relationships were found in plant height, stem width, leaf area, leaf length, leaf width, petiole length, and leaf dry weight whereas no relationship was found between plant height or petiole length with specific leaf area. Plants growing in the cool bioclimatic region showed that plant height increases more than the increase in stem width, leaf length, leaf width, and petiole length while plants growing in the warm bioclimatic region showed that plant height increase was lower than that of stem width, leaf length, leaf width, and petiole length. Plant height relationship with root length indicated that in the cool region the plant height increase was less than the increase in the root length while the opposite occurred in the warm region. These differences can be explained by the effects of the different environmental conditions present in the two bioclimatic regions such as water scarcity and availability on the growth ofM. parviflora.  相似文献   

17.
This paper presents evidence that cultivars of manioc (Manihot esculenta) have been selected for combinations of characters that allow them to be perceptually distinguished. This mode of selection is proposed to explain why cultivars are so variable in perceptually salient taxonomic characters unrelated to the use or survival of the plant. This paper reanalyzes published material on manioc and related species and presents new evidence from the inventory of manioc cultivars maintained by the Aguaruna Jívaro of northern Peru. Rogers and Fleming’s (1973) sample of manioc cultivars exhibits 3 characteristics implied by the model of selection for perceptual distinctiveness: high, continuous, and independent variation of nonadaptive taxonomic characters. The inventory of Aguaruna cultivars exhibits 2 additional characteristics predicted by the model: taxonomic characters of this local inventory vary as independently and nearly as greatly as those of the species as a whole. Anthropological evidence is presented to demonstrate that Aguaruna interact with the plants as predicted by the model: Aguaruna identify cultivars using many of the same characters as Rogers and Fleming and they confuse cultivars they regard as similar in stem color, petiole color, and leaf shape. The evidence suggests that procedures used by cultivators to identify cultivars leave their imprint on the plants; crops show the effect of the cultivator's eye as well as hand.  相似文献   

18.
In this paper the ontogenesis and histochemistry of the petiolar glands found on the petiole/rachis of the eight Chamaecrista species of the section Absus, subsection Baseophyllum (Leguminosae, Caesalpinioideae) are studied by using light microscopy techniques, aiming to characterise these structures and to provide taxonomic characters which may be useful in phylogenetic approaches. Strips for glucose identification reacted positively with the exudates of the glands, confirming the presence of nectar in the secretion, characterising these glands as extrafloral nectaries (EFN). Histochemical tests also detected the presence of neutral and acid muco-polysaccharides, pectins, mucilages, total proteins, and phenolic compounds in the EFNs. The EFNs arise from a group of meristem cells (protodermis, ground meristem and procambium) in the petiole/rachis. All EFNs of the investigated taxa share some morpho-anatomical characters, so that their peculiarities are too weak to be used alone in the identification of particular species. Rather their similarities may be used to include these species into a single group, supporting the hypothesis of monophyly of the subsection Baseophyllum.  相似文献   

19.
Cotton (Gossypium hirsutum L.) is an important crop that is used to produce both natural textile fiber and cottonseed oil. Cotton fiber is a unicellular trichome, whose length is critical to fiber quality and yield but difficult to modify. FCA was originally identified based on flowering time control in Arabidopsis. The function of the second RNA recognition motif (RRM) domain of Oryza sativa FCA in rice cell-size regulation has been previously reported, showing it to be highly conserved across dicotyledonous and monocotyledonous plants. The present study showed that the second RRM domain of Brassica napus FCA functioned in Gossypium hirsutum, leading to enlargement of multiple cell types, such as pollen, cotyledon petiole, and cotton fiber. In the resulting transgenic cotton, fiber length increased by ~10% and fiber yield per plant showed a dramatic increase, ranging from 35 to 66% greater than controls. Thus, this RRM domain may be a cell-size regulator and have great economic value in the cotton industry.  相似文献   

20.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号