首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pinealectomy in the female golden Syrian hamster is not always completely effective in preventing the suppressive effects of long-term light deprivation due to blinding on pituitary prolactin (PRL) cell activity. We examined this curious phenomenon by measuring pituitary PRL mRNA levels, PRL synthesis, and radioimmunoassayable PRL, and correlating these changes with the status of estrous cyclicity. As expected, 12 weeks of light deprivation resulted in loss of estrous cyclicity and a greater than 90% decline in all indices of pituitary PRL cell activity, compared with intact cycling controls. Pinealectomy prevented only 40-50% of this decline. However, if noncycling light-deprived pinealectomized animals were excluded, pinealectomy was completely effective, i.e., cycling intact control animals were no different than cycling blind-pinealectomized. We conclude that the inability of pinealectomy to completely prevent the decline in prolactin cell activity seen after blinding is due to the loss of estrous cyclicity in some blind-pinealectomized females, with the attendant loss of the prolactin-stimulating hormone estrogen.  相似文献   

2.
Pituitary prolactin (PRL) cell activity (i.e. PRL messenger ribonucleic acid [mRNA] levels, PRL synthesis, and radioimmunoassayable [RIA]-PRL), and serum RIA-PRL were measured in female golden Syrian hamsters that were (1) light-deprived and then ovariectomized before loss of estrous cyclicity, (2) light-deprived but not yet acyclic, and (3) light-deprived and ovariectomized simultaneously. The results indicate that light-deprivation can decrease PRL cell activity in ovariectomized hamsters but not in animals that continue to cycle. Thus, estrous cyclicity can be said to largely protect PRL cell activity from depressions due to light deprivation. After acyclicity/ovariectomy, however, PRL cell activity is no longer protected and light-deprivation leads to large depressions in PRL mRNA levels, PRL synthesis, and RIA-PRL beyond that caused by acyclicity/ovariectomy alone. As seen in previous studies of total light-deprivation in nonovariectomized female hamsters, we found that removing the pineal gland in conjunction with light-deprivation in ovariectomized hamsters can completely, partially, or fail to restore various measures of PRL cell activity.  相似文献   

3.
Mammotrophs or prolactin (PRL) cells were identified in the adenohypophysis of adult golden hamsters by immunocytochemical techniques with a polyclonal anti-PRL, that was proved to be specific to PRL by the dot immunoblotting test. Postembedding immunostaining was performed on Araldite thin sections by immunoperoxidase and immunogold methods. PRL cells were classified into three types according to the different size of the secretory granules. The Type A cells were usually small and angular or oval in shape, and had secretory granules ranging in diameter from 100-230 nm, and showed poorly developed organelles. The Type B and C cells were larger and round or ovoid in shape, contained larger granules, 230-280 nm and 280-570 nm, respectively, and displayed well developed organelles. Immunoreactive PRL cells in the male pituitaries were far less numerous than in the nonpregnant female glands, and were mostly of the Type A and B, whereas in the female the Type C and B cells predominated. In pregnant females, Type C cells became activated and increased in number, while the other two types decreased in proportion. In lactating females, Type A and B cells significantly increased in number at the expense of the Type C cells; meanwhile, the exocytosis of secretory granules was frequently found in all types of PRL cells. The present findings suggest that Type C and B PRL cells, especially the former, are potent in producing and releasing PRL and highly responsive to various physiological stimuli, while Type A cells are probably relatively inert in synthetic activity.  相似文献   

4.
Population ratio and morphology of prolactin cells were studied by employing immunohistochemical methods in the adenohypophysis of normal and experimental golden hamsters of both sexes at 16 weeks of age. Prolactin cells occupied 29% of the total adenohypophyseal cells in the intact males exposed to 14/10 h light/dark schedule. After stimulation of the pineal activity by binding or exposure of males to continuous darkness for eight weeks, prolactin cells became atrophic and were reduced in population to 17% and 13%, respectively. Pinealectomy prevented to some extent the effects of the above treatments; thus, prolactin cells constituted 27% in the pinealectomized and blinded hamsters, and 19% in the pinealectomized and darkness-treated group; and their morphology was comparable with that of the intact controls. Prolactin cells in the normal females were apparently larger in size and more numerous as compared with those of the normal males, comprising 47% of cell population in the anterior pituitary. In response to light deprivation, prolactin cells were atrophic with a diminished cytoplasm and decreased in cell number as reflected in the population ratio of 27% in the blinded and 21% in the darkness-treated groups. In pinealectomized females combined with binding or darkness-treatment, prolactin cells contained an abundance of secretory granules in the cytoplasm and maintained the population ratio comparable to that in the intact females. The present study revealed that light deprivation exerts an inhibitory effect on the secretory activity of prolactin cells and also causes hypoplasia of prolactin cells in the hamster adenohypophysis, the effects being mediated by the pineal gland.  相似文献   

5.
Tachibana T  Ito T 《Human cell》2003,16(4):205-215
In order to elucidate the effects of hypothalamic regulation on the morphology of GH cells, light and electron microscopic immunocytochemical examinations were carried out comparing GH cells in the anterior pituitary gland of anencephalic fetus with those of normal fetuses. Three types of GH cells were identified in the anterior pituitary gland of anencephalic fetus as well as in the normal fetus. Type-I is a small, round cell containing a few small secretory granules. Type-III is a large, polygonal cell with numerous large secretory granules. Type-II is a polygonal cell with medium-sized secretory granules. The Type-II GH cell was predominant in both anencephalic and normal fetuses. The most striking difference between anencephalic and normal fetuses was the presence of atypical forms of the Type II cell. These were polygonal cells containing secretory granules, which were either immunopositive or immunonegative to anti-human GH (anti-hGH) serum. Furthermore, two other types of GH cells were identified. The somatomammotroph (SM cell) contained GH and PRL in different granules within the same cell. Also, a different type of the GH cell was noted containing two varieties of secretory granules; one was immunolabeled only with anti-hGH and the other was not immunolabeled to either anti-hGH or anti-human PRL (anti-hPRL). From these results, we suggest that an absence of hypothalamic regulation in the anencehpalic does not seriously modify GH cell morphology but induces an altered GH storage pattern in some of the cells.  相似文献   

6.
Summary Nuclear uptake and retention of3H-estradiol by luteinizing hormone (LH) and prolactin (PRL) cells was examined in three species of rodents (guinea pigs, hamsters and gerbils) using the combined techniques of immunocyto-chemistry and autoradiography. Castrated animals were injected with3H-estradiol and decapitated 1.5 h later. The pituitary glands were processed for thaw-mount autoradiography followed by conventional immunocytochemical staining for LH and PRL.3H-estradiol accumulated in more than 80% of the anterior pituitary cells in the gerbils, while only 33 and 22% of the cells accumulated3H-estradiol in the hamsters and guinea pigs, respectively. A varying percentage of immunoreactive LH and PRL cells in all three species were found also to contain binding sites for estradiol. Some LH and PRL cells in hamsters and guinea pigs and only some in PRL cells of gerbils were found to be devoid of grains. Quantitative analysis revealed that the number of grains per nucleus differed considerably from cell to cell. LH cells of guinea pigs accumulated much larger amounts of3H-estradiol than did the PRL cells, while the LH cells in the hamsters and gerbils accumulated only slightly more3H-estradiol than the PRL cells.These results confirm the previous observations in rats and baboons that demonstrated tremendous species differences in percentage of cells in the anterior pituitary gland that accumulated3H-estradiol. Also, these data suggest that there are functionally heterogeneous cell types among the LH and PRL cells in hamsters, guinea pigs and gerbils as has been previously demonstrated in rats and baboons.  相似文献   

7.
Somatotrophs or growth hormone (GH) cells in the adenohypophysis of golden hamsters were identified by immunocytochemical staining with polyclonal rabbit anti-human GH. They were oval or columnar in shape, and had secretory granules of two size ranges, 90-150 nm and 280-320 nm, which were present in the same cells; no subtypes of GH cells were observed. Secretory granules were located in the peripheral portion of the cytoplasm or concentrated at the vascular pole of the cell. Flattened cisternae of the rough endoplasmic reticulum in parallel array and a moderately developed Golgi apparatus were often found in the cytoplasm. No sex difference was noticed in the population ratio of GH cells. Immunocytochemical staining with anti-GH or anti-prolactin (PRL) antibodies on separate adjacent sections revealed that the GH and PRL were stored in two different cell types.  相似文献   

8.
Summary The effects of the pineal gland on the light microscopic-immunocytochemical and ultrastructural appearance of pituitary mammotrophs were studied in female rats eight weeks after prepubertal blinding and olfactory bulbectomy.Blinding and anosmia resulted in a marked decrease in the size of the pars distalis concomitant with a reduction in the apparent number and size of PRL cells as compared with intact animals. Ultrastructurally, these cells appeared much less active than those of intact rats. The small and angular-shaped mammotrophs of blind-anosmic rats characteristically exhibited scant arrays of rough endoplasmic reticulum, small Golgi complexes with few immature secretory granules, few mature secretory granules and rare exocytosis patterns.Pinealectomy tended to reverse the effects of blinding and anosmia on pars distalis size and PRL cell size, apparent number and ultrastructure. In fact, the mammotrophs of blind-anosmic-pinealectomized rats were quite similar in ultrastructural appearance to those of intact rats.From these data we conclude that the pineal causes mammotroph hypotrophy and hypoplasia in blind-anosmic female rats.Supported by USPHS Biomedical Research Support Grant # RR 05675. The authors thank Dr. Bruce A. Richardson for his kind help with the immunocytochemistry  相似文献   

9.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

10.
When blinded, golden Syrian hamsters undergo marked gonadal atrophy. This phenomenon is prevented by pinealectomy. The mechanisms involved in this pineal-mediated response were investigated through either the transplantation of pituitary homografts or treatment of blinded, male hamsters with exogenous prolactin. It was found that anterior pituitary homografts placed beneath the kidney capsule on the day of bilateral optic enucleation partially maintained testicular and accessory organ weights. Serum prolactin levels were reduced in blinded animals below that of intact controls. On the other hand, blinded hamsters bearing anterior pituitary homografts showed serum prolactin levels comparable to those of intact controls. In other experiments, the injection of either 3.2 or 6.4 I.U. of ovine prolactin/hamster/ day for a period up to seven weeks partially inhibited the atrophy of testes and accessory organ weights in blinded hamsters. These data suggest a possible role for prolactin in the pineal-mediated atrophic response to light deprivation.  相似文献   

11.
Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types clearly increased and the organelles developed gradually. Some GH cells were found undergoing mitosis.  相似文献   

12.
Recent immunoelectron microscopic studies have shown that immunoreactive prolactin (PRL) in rat pituitary can be detected not only in typical PRL cells, characterized by large secretory granules, but also in another type of cell, which contains small secretory granules. To determine whether or not these two cell types are involved in PRL biosynthesis, we developed a procedure to investigate PRL gene expression by using in situ hybridization at the ultrastructural level. Rat pituitary was fixed and vibratome sections were incubated with a PRL [35S]-cDNA probe and subsequently flat-embedded in Araldite. Semi-thin and ultra-thin sections were processed for autoradiography. The results indicate that only the two PRL cell types were labeled. When immunolabeling for PRL was applied to ultra-thin sections, only immunopositive cells were seen to contain silver grains. In these cells the silver grains were associated with the rough endoplasmic reticulum and nucleus. When a growth hormone (GH) [35S]-cDNA probe was used as a control, only GH-secreting cells were labeled. This study confirms that the two PRL cell types are involved in biosynthesis of PRL. Moreover, this simple in situ hybridization technique provides a new approach to accurately localize mRNA in complex tissue and to investigate the subcellular distribution of mRNA under differing experimental conditions.  相似文献   

13.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

14.
The newly established rat pituitary cell line, MtT/S, has pituitary somatotroph (growth hormone-producing cell)-like characteristics, i.e., the cells produce growth hormone (GH), possess GH-immunopositive secretory granules, and respond to GH-releasing hormone. When MtT/S cells were cultured in regular medium no prolactin (PRL) cells were observed and PRL was not detected, by radioimmunoassay or Western blot analysis, in the medium or the cells. However, GH production and the GH cell population decreased markedly when the cells were incubated with insulin or insulin-like growth factor-1 (IGF-1). After stimulation with insulin or IGF-1 there was a 2-day lag period, then some PRL was detected in the medium; after 5 days a number of PRL cells appeared. Double immunocytochemistry indicated clearly that no cell contained both PRL and GH. These results show that insulin and IGF-1 stimulate conversion of MtT/S cell line GH cells to PRL cells. This suggests that the MtT/S cell line is an excellent model system which shows the GH-cell/PRL-cell lineage.  相似文献   

15.
The storage sites of the pituitary glycoprotein hormones were identified with the use of electron microscopic immunocytochemical techniques and antisera to the beta (beta) chains of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH). The TSH cells in normal rats is ovoid or angular and contains small granules 60-160 nm in diameter. In TSH cells hypertrophied 45 days after thyroidectomy, staining is in globular patches in granules or diffusely distributed in the expanded profiles of dilated rough endoplasmic reticulum. The gonadotrophs (FSH and LH cells) exhibited three different morphologies. Type I cells are ovoid with a population of large granules and a population of small granules. Staining for FSHbeta or LHbeta was intense and specific only in the large granules (diameter of 400 nm or greater). Type II cells are angular or stellate and contain numerous secretory granules averaging 200-220 nm in diameter. They predominate during stages in the estrous cycle when FSH or LH secretion is high. Type III cells look like adrenocorticotropin (ACTH) cells in that they are stellate with peripherally arranged granules. They generally stain only with anti-FSHbeta and their staining can not be abolished by the addition of 100 ng ACTH. In preliminary quantitative studies of cycling females, we found that on serial sections FSH cells and LH cells show similar shifts to a more angular population of cells during stages of active secretion. However, the shifts are not in phase with one another. Furthermore, there are at least 1.5 times more FSH cells than LH cells at all stages of the cycle. Our collection of serial cells shows that some cells (usually type I or II) stain for both gonadotropic hormones, whereas others (usually type II or III) contain only one.  相似文献   

16.
Multiple hormone storage by cells of the human pituitary   总被引:1,自引:0,他引:1  
While immunostaining serial semi-thin sections of acrylic resin-embedded normal human pituitary using antisera to human pituitary hormones, it became clear that several cells were stained by more than one antiserum. The tissue had been surgically excised from a patient with a prolactinoma. The tumor, which was immunoreactive only with antiprolactin antiserum, was distinctly different from the pieces of tissue under study which had normal pituitary architecture and demonstrated immunoreactivity with antisera against all six of the common pituitary hormones. A major immunoelectron microscopic investigation, using immunocolloidal gold and immunoperoxidase methods, revealed cells in which follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) were co-localized to the same electron-dense granules. Some similar cells also possessed electron-lucent granules immunoreactive only for anti-PRL antiserum. Adrenocorticotrophic hormone (ACTH) and PRL were also found in the same cell but were very largely localized to separate, morphologically different populations of electron-dense and -lucent storage granules. By employing double immunolabeling, a few granules in the ACTH/PRL cells were shown to be immunoreactive to both anti-ACTH and anti-PRL antisera. The possibility that the multipotential stem cells is discussed.  相似文献   

17.
Fujita  H.  Kurihara  H.  Miyagawa  J. 《Cell and tissue research》1983,229(1):129-136
In order to study the fine structural effect of calcium influx on secretory activity of rat anterior pituitary cells, small pieces of anterior pituitary were incubated in Krebs' medium containing the calcium ionophore A23187 (0.15 mM) and were examined electron microscopically. Marked changes were present in all types of secretory cells incubated for 3, 12 and 20 min in the medium containing calcium and A23187. Secretory granules tended to accumulate in the peripheral cytoplasm of the secretory cells, and more numerous images of granule release by exocytosis were observed in somatotroph (STH cell), luteotroph (LTH cell), thyrotroph (TSH cell), corticotroph (ACTH cell), type 1 gonadotroph (Type 1 GTH cell), and type 2 gonadotroph (Type 2 GTH cell). In addition to the increase in the number of exocytosis of single granules, the simultaneous extrusion of multiple granules, "multigranular exocytosis", was often observed in all kinds of secretory cells, especially the ACTH-cells. Large numbers of granule cores were often located in large vacuole-like or channel-like structures, irregular in shape and size, which were open to the intercellular or pericapillary space. Some parts of the membrane of the vacuole-like or channel-like structures were coated. These observations are interpreted to suggest that the calcium influx stimulates the extrusion of the secretory granules by single or multigranular exocytosis.  相似文献   

18.
Light deprivation by blinding in female hamsters was followed by a regression of the reproductive organs, an elevation of pituitary LH concentration and a depression of pituitary prolactin levels. Pinealectomy negated almost completely the effects of light deprivation on the neuroendocrine-reproductive axis. Weekly subcutaneous implants of a melatonin:beeswax pellet completely prevented the pineal gland from inhibiting reproductive physiology in blinded hamsters. The findings suggest that melatonin is not pineal antigonadotrophic factor in female golden hamsters. Melatonin implanted hamsters also had higher than normal levels of plasma prolactin.  相似文献   

19.
Growth hormone [GH] and prolactin [PRL] can be demonstrated simultaneously in electron micrographs by means of the double immunocytochemical labeling technique using colloidal gold particles of two different sizes. This method was used to study biopsy specimens obtained from 15 patients suffering from acromegaly, 11 patients suffering from prolactinomas, and eight biopsy specimens obtained during adenomectomy from the normal, paraadenomatous pituitary tissue. Four granule populations with different immunoreactions were found: (1) granules containing GH only, (2) granules containing PRL only, (3) mixed granules containing GH and PRL, and (4) granules displaying no immunoreactivity. The existence of mixed granules indicated that the two hormones are synthesized by the same cell and in communicating compartments of the cells; i.e., the rough-surfaced endoplasmic reticulum. The number of GH-containing granules (pure GH granules and mixed GH-PRL granules) was greater than that of PRL-containing granules (pure PRL granules and mixed PRL-GH granules) in adenomas causing acromegaly and in the normal pituitary tissue, whereas the opposite was true for prolactinomas. The number of PRL-containing granules was larger in biopsy specimens from patients who had acromegaly and hyperprolactinemia than in patients with acromegaly and normal serum PRL levels.  相似文献   

20.
Localization and ultrastructural maturation of prolactin (PRL) and growth hormone (GH) cells were studied in pituitaries from neonatal, immature (4-6 weeks old), and adult rats (2-3 months old) by light and electron microscopic immunocytochemistry. The distribution pattern of these cells did not change with age. Both cell types were concentrated laterodorsally, with PRL cells adjacent to the intermediate lobe and GH cells nearer the center of the pars distalis. Labeling density of the immunogold reaction was highest for both hormones in immature rats. In neonatal and immature rats, one PRL cell type with granules 200 nm in diameter was present. In adult rats, two types of PRL cells were present: one containing polymorphous granules measuring about 500 nm (prevalent in female rats), the other with spherical granules about 200 nm (prevalent in male rats). No changes were detected in GH cells during maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号