首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biochemical effects of 3MI on cellular membranes were investigated. This study was conducted to examine the effects of 3MI on the hemolysis of erythrocytes, the transport of 22Na+ in resealed erythrocyte ghosts, and on the ATPase activities of erythrocyte membranes. The percent of hemolysis as a function of 3MI incubation time was sigmoidal. Seventy-five percent of the hemoglobin was released with the second 2 hr of incubation during which the concentration of 3MI in the cells reached a plateau of 2500 mug/ml of packed RBC. The effect of 3MI at a subhemolytic concentration on passive and active 22Na+ transport were not significant. The total and Mg2+-dependent ATPase activities in the membranes were significantly increased after 1 hr of incubation with 3MI at concentrations of 100, 200, 300, 400 and 500 mug/ml (P less than or equal to 0/ml (P smaller than or equal to 0.02).  相似文献   

2.
Influx of the K+ analogue Rb+ was measured through the ouabain-sensitive Na+/K+ pump and the ouabain-insensitive “leak” pathways in Cl? or NO in mature red cells from adult pigs and in reticulocytes naturally occurring in 7-day-old piglets. In reticulocytes, Rb+ influxes by the two pathways were of about equal magnitude in Cl? (13 and 10 mmoles/liter cells × hr) and at least 25-fold larger than in mature red cells (0.5 and 0.4 mmoles/liter cells × hr). In Na + media, a portion of the ouabain-insensitive “leak” flux of Rb+ was Cl? dependent (Rb+Cl? transport) as NO replacement reduced Rb+ influx by 90% in reticulocytes and by 40% in mature red cells. The sulfhydryl reagent N-ethylmaleimide (NEM) stimulated Rb+Cl? transport about twofold in reticulocytes and up to 13-fold in mature red cells. When reticulocytes matured to erythrocytes during in vitro incubation, about 90% of both ouabain-sensitive Rb+ pump and ouabain-insensitive Rb+Cl? influx were lost. In contrast, the NEM-stimulated Rb+Cl? transport changed much less throughout this period, suggesting an entity operationally but not necessarily structrually distinct from the basal Rb+Cl? transport. Although the experimental variability precluded a full assessment of significant changes in the small Na+/K+(Rb+) pump and Rb+Cl? fluxes in mature pig red cells kept for the same time period in vitro, Rb+ flux changes in reticulocytes appear to be maturational in nature, reflecting parallel activity transitions of Na+/K+ pump and Cl?-dependent K+ fluxes in vivo.  相似文献   

3.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

4.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

5.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

6.
The pig kidney cell line, LLC-PK1, exhibits rheogenic d-glucose coupled transepithelial Na+ transport that is inhibited by phlorizin. By measuring the difference in initial rates of influx of 86Rb+ with and without coupled Na+ transport, we can demonstrate an 86Rb+ uptake linked to Na+ transport. The simultaneous determination of phlorizin-inhibited Na coupled d-[3H]glucose uptake and 86Rb+ influx allows calculation of an Na+/Rb+ stoichiometry that is consistent with an electrogenic Na+ for Rb+ exchange.  相似文献   

7.
As turkey erythrocytes were progressively depleted of ATP by preincubation with dinitrophenol, the (Na+ + K+ + 2Cl-)-cotransport system (assayed by the bumetanide-sensitive fraction of 86Rb+ influx) became less responsive to activation. The dependence upon intracellular ATP concentration was significantly steeper for transport activated by hypertonic shock (halfmaximal activity at 0.7 mM ATP) than for that activated by either epinephrine or cyclic AMP (halfmaximal activity at 1.7 mM ATP). Upon removal of epinephrine or cyclic AMP from cells that had been preincubated with those substances, bumetanide-sensitive transport activity declined sharply, even though the intracellular cyclic AMP concentration was still over 10-fold that required to maximally activate the transport system. These data are in agreement with the notion that the (Na+ + K+ + 2Cl-)-cotransport system in turkey erythrocytes is activated by cyclic AMP, presumably through the 'classical' pathway involving a protein kinase. They do however indicate that some other, as yet undefined aspect of cyclic AMP metabolism is important for the maintenance of transport activity.  相似文献   

8.
5-Iodoacetamidofluorescein (5-IAF) covalently labels dog kidney (Na+ + K+)-ATPase with approximately 2 moles incorporated per mole of enzyme. ATPase and K+-phosphatase activities are fully retained after reaction, and the kinetic parameters for Na+, K+, Mg2+, ATP and p-nitrophenyl phosphate are likewise not significantly affected. The fluorescence of the bound 5-IAF is increased by ATP, Na+, and Mg2+, and decreased by K+. These fluorescence changes likely reflect ligand-induced stabilization of the E1 or E2 states of the enzyme.  相似文献   

9.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

10.
β-Adrenergic- and volume-dependent regulation of 22Na influx and 86Rb influx and efflux in erythrocytes of brown trout (Salmo trutta m. lacustris) were studied. Norepinephrine (10-6 mol·1-1) increased the rate of 22Na influx 10-to 20-fold via the activation of a Na/H exchanger (ethyl isopropyl amiloride inhibited component of 22Na influx). Unlike carp erythrocytes the activity of the Na, K-pump (ouabain-inhibited 86Rb influx) was only slightly (25–35%) increased by norepinephrine. The norepinephrine-induced increment of Na, K-pump activity was completely abolished by ethyl isopropyl amiloride thus indicating that this effect was mediated by Na/H exchanger-induced increase of intracellular Na+ concentration. Cell shrinkage in hyperosmotic media resulted in a several-fold activation of the Na/H exchanger. Cell swelling in hypotonic media increased both the rate of K, Cl-cotransport [((dihydroindenyl)oxy)alcanaic acidsensitive components of 86Rb influxe and efflux] and passive permeability (leakage) of erythrocyte membranes for Na+ and K+. No volume-dependent regulation of Na, K, 2Cl-cotransport (bumetanide-sensitive components of 86Rb fluxes) was found. It may be concluded that the regulation of monovalent cation transport in erythrocytes of fast-moving (carnivorous) brown trout differs essentially from that in slowly moving (herbivorous) carp.  相似文献   

11.
The total fractions of gangliosides and cerebrosides isolated from the tissue of human brain were studied for their effect on the Na+, K+-ATPase activity of native erythrocytes and their membranes. It is shown that gangliosides depending on time of their preincubation with the enzyme preparation and concentration produce both the activating and inhibiting action and cerebrosides--only the inhibiting one. Gangliosides inhibit the transport ATPase activity noncompetitively with respect to ATP and Na+ and competitively--to K+, cerebrosides inhibit it noncompetitively with respect to all ATPase activators.  相似文献   

12.
Treatment of Friend erythroleukemia cells with several different chemical agents causes an early decrease in the 86Rb+ influx mediated by Na+/K+ adenosine triphosphatase (ATPase). These agents, which induced Friend cells to differentiate, include dimethylsulfoxide (DMSO), ouabain, hypoxanthine, and actinomycin D. The magnitude of the early decrease in 86Rb+ influx correlates with the proportion of cells in cultures of inducible Friend cell clones which later go on to synthesize hemoglobin. Compounds which do not incude differentiation in these cells, such as xanthine, exogenous hematin, and erythropoietin, do not cause a change in 86Rb+ influx. A change in the intracellular K+ ion concentration does not occur during induction by DMSO because, although there is a decrease in K+ content per cell soon after induction, there is a parallel decrease in cell volume. These results and previous observations from this laboratory are discussed in terms of the posible involvement of the Na+/K+ ATPase in Friend cell differentiation.  相似文献   

13.
Zusammenfassung Unter Annahme, daß die hier benutzte Bleipräcipitationsmethode bei dem Nachweis membranengebundener ATPase-Aktivitäten keine artifiziellen Ergebnisse liefert, lassen sich an den verschiedenen Teilen der Zellmembran der Herzmuskelzelle mindestens zwei unterschiedliche ATP spaltende Fermente oder Fermentsysteme darstellen. Erstens eine Mg-, Na- und K-Ionen benötigende, durch g-Strophanthin hemmbare ATPase, die vermutlich identisch mit der Na, K-Transport-ATPase ist. Sie wird durch Ca++ und durch SH-Gruppen-Inhibitoren unterdrückt und spaltet vorzugsweise ATP, weniger intensiv ITP. Das Ferment hat seinen Sitz an der Plasmamembran des Sarkolemms, nicht an der Basalmembran. Zweitens ein durch Mg++ und auch durch Ca++ darstellbares Fermentsystem, das nicht durch Strophanthin zu beeinflussen ist und keine Na- und K-Ionen benötigt. SH-Gruppen-Inhibitoren vermindern diese Fermentaktivität, unterdrücken sie aber nicht völlig. Diese Fermentaktivität ist an den Membranen des Glanzstreifens lokalisiert und besonders aktiv am Nexus (Fascia und Macula occludens). Sie könnte identisch sein mit der in Untersuchungen an isolierten Zellmembranpräparaten gleichzeitig mit der Na-, K-Transport-ATPase gewöhnlich vorgefundenen, durch Mg ohne Na und K stimulierten Grund-ATPase-Aktivität.
Cytochemical localization and differentiation of Na+, K+ dependent and other membrane-bound AT pase activity in the myocardium
Summary Assuming that the lead precipitation method used in the present study for the cytochemical demonstration of ATPase activity does not yield artificial results one can demonstrate at least two enzymes or enzyme systems ATP hydrolyzing at the different parts of the cell membrane of the myocardial cell. First, a Mg, Na, K activated ATPase subject to inhibition by ouabain. This enzyme system is presumably identical with the Na, K transport ATPase. It is inactivated by Ca++ and by SH groups inhibitors and preferably splits ATP, to some extent also ITP. The enzyme activity is localized at the plasma membrane of the sarcolemma and not at the basal membrane. Second, an enzyme system which can be demonstrated in the presence of Mg++ and also of Ca++. It is not inhibited by ouabain and does not require Na- and K ions. Its activity is lowered, though not abolished by sulfhydryl group inhibitors. This enzyme activity is localized at the membranes of the intercalated disks and is particularly active at the nexus (Fascia and macula occludens). It may be identical with the Mg stimulated, Na, K independent basal ATPase activity which usually is observed in studies on isolated cell membrane preparations simultaneously with the Na, K transport ATPase.

Abkürzungen ATP Adenosintriphosphat - ITP Inosintriphosphat - UTP Uridintriphosphat - GTP Guanosintriphosphat - ADP Adenosindiphosphat - IDP Inosindiphosphat - PCMP p-Chloromercuribenzoat - NEM N-Äthylmaleinimid - Tris 2-Amino-2-oxymethylpropan-1,3-diol Für die sorgfältige und aufmerksame Hilfe bei der Durchführung der Arbeit danken wir Frl. Evelyn Bolick und Frl. Heike Sommerfeld.  相似文献   

14.
The fluxes of 22Na+ and 86Rb+ in Arbacia sperm and oocytes were studied in order to determine how these cells carry out cation exchange with the sea environment. The uptake of these ions by serum followed a pattern of early rapid influx (initial 0.5 min) and subsequent efflux (1–3 min) followed by a gradual uptake (after 3 min). Neither the uptake nor the efflux of these cations by Arbacia sperm were affected by ouabain, suggesting that influx and efflux of 22Na+ and 86Rb+ in Arbacia sperm occur predominantly by passive transport. The 22Na+ uptake by Arbacia oocytes showed a steady increase after an initial rapid uptake. A slight but significant inhibition of 22Na+ uptake was observed with ouabain. However, 86Rb+ uptake by the oocytes reached an early equilibrium and was not affected by ouabain. The uptake of Rb+ by Arbacia oocyte is by passive transport while that of Na+ is both by passive and active transport.  相似文献   

15.
When the hydrolytic reaction between eel electric organ (Na + K) · ATPase and [γ-32P]ATP is terminated at neutral pH by heat precipitation, a phosphoenzyme complex is formed which reaches maximal levels in the simultaneous presence of Mg, Na, and K. After formation of a steady-state level of phosphoenzyme in the presence of Mg and Na, a pulse of K increases the level of the heat-precipitated phosphoenzyme (while decreasing the level of the acid-precipitated phosphoenzyme). The formation of the heat-precipitated phosphoenzyme is clearly inhibited by ouabain only when the phosphoenzyme is formed in the presence of Mg, Na, and K. Inorganic phosphate decreases the level of the heat-precipitated phosphoenzyme, but not that of the acid-precipitated phosphoenzyme (in the presence of Mg and Na or in the presence of Mg, Na, and K). Moreover, a heat-precipitated, ouabain-sensitive phosphoenzyme forms in the reaction between the eel (Na + K) · ATPase and 32Pi with or without ATP. The pH stability of the heat-precipitated phosphoenzyme complex is maximal at pH 6 to 8, and this complex shows little or no reactivity with neutral hydroxylamine, suggesting that the phosphate is not bound to an acyl residue of the protein. These experiments indicate that both heat-resistant and acid-resistant phosphoenzymes are formed during the (Na + K) · ATPase reaction at pH 7.4.  相似文献   

16.
ATPase activity of freshly prepared brain microsomes was stimulated 20% when 0.1 mm CaCl2 was added in the presence of a “saturating” concentration of MgCl2 (4 mm). This (Ca + Mg)-stimulated activity declined rapidly on storage. Treatment of the microsomes with 0.12% deoxycholate in 0.15 m KCl, followed by centrifugation and resuspension in sucrose, produced a preparation both stable on storage at ?15 °C and with an increased stimulation in the presence of CaCl2. SrCl2 was more effective than CaCl2, but BaCl2 was a poor activator. KCl and NaCl stimulated the (Ca + Mg)-ATPase activity by reducing substrate (ATP) inhibition. The Km for ATP was 0.1 mm, a third that of the Mg-ATPase. CTP, ITP, and GTP could not substitute for ATP, although they were fair substrates for the Mg-ATPase. The energy of activation of the (Ca + Mg)-ATPase was 21 kcal, nearly twice that of the Mg-ATPase. After sucrose density-gradient centrifugation of the microsomal preparation, the (Ca + Mg)-ATPase activity was distributed with the (Na + K)-ATPase and not with the mitochondrial marker succinic dehydrogenase. Studies with ouabain, oligomycin, and azide distinguished the (Ca + Mg)-stimulated ATPase from (Na + K)- and mitochondrial ATPases. Sensitivity to ruthenium red suggested a link to Ca transport, although the microsomal 45Ca accumulating system was much more sensitive to the inhibitor than was this ATPase activity.  相似文献   

17.
Three cultivars of sugar beet (Beta vulgaris L.), which are sensitive to aluminium (Al) in the order Primahill > Monohill > Regina, were grown in water culture for 2 weeks. Nutrients were supplied at 15% increase of amounts daily, corresponding to the nutrient demand for maximal growth. The 2.4-dinitrophenol (DNP)-sensitive (metabolic) and DNP-insensitive (non-metabolic) uptake of aluminium, phosphate. 45Ca2+ and K+(86Rb+) in roots were measured as well as transport to shoots of intact plants. All 3 cultivars absorbed more aluminium if DNP was present during the aluminium treatment than in its absence. It is suggested that sugar beets are able to extrude aluminium activity or that they possess an active mechanism to keep Al outside the cell. The presence of Al in the medium during the 1-h experiment affected the metabolic and non-metabolic fluxes of 45Ca2+ and K+(86Rb+) in different ways. In the presence of DNP, the influx of both 45Ca2+ and K+(86Rb+) and the efflux of 45Ca2+ were inhibited by Al in a competitive way. At inhibition of 45Ca2+ influx, 2 Al ions are probably bound per Ca2+ uptake site in cv. Regina (Al-tolerant), but in cvs Primahill and Monohill only one Al ion is bound (more Al sensitive). Aluminium competitively inhibited the active efflux of 45Ca2+ (absence of DNP) in almost the same way in the 3 cultivars. In contrast, aluminium stimulated the influx of K+(86Rb+) in cvs Primahill, Monohill and Regina in the absence of DNP. Thus, the Al effects on active and passive K+(86Rb+) influx are different. The total influx of K+(86Rb+) increased in the presence of Al and might be connected to an active exclusion of Al. Regina is the least Al-sensitive cultivar, probably because Al interferes less with the Ca2+ fluxes and because this cultivar actively excludes phosphate in the presence of Al. Thus Al-phosphate precipitation within the plant could be avoided.  相似文献   

18.
We have investigated the localization of a set of intrinsic ATPase activities associated with purified synaptic plasma membranes and consisting of (a) a Mg2+-ATPase; (b) an ATPase active at high concentrations of Ca2+ in the absence of Mg2+ (CaH-ATPase); (c) a Ca2+ requiring Mg2+-dependent ATPase (Ca + Mg)-ATPase, stimulated by calmodulin (Ca-CaM-ATPase); (d) a Ca2+-dependent ATPase stimulated by dopamine (DA-ATPase); and (e) the ouabain-sensitive (Na + K)-ATPase. The following results were obtained: (1) All ATPases are largely confined to the presynaptic membrane; (2) the DA-, (Ca + Mg)-, (Ca-CaM)-, and (Na + K)-ATPases are oriented with their ATP hydrolysis sites facing the synaptoplasm; (3) the Mg- and CaH-ATPases are oriented with their ATP hydrolysis sites on the junctional side of the presynaptic membrane and are therefore classified as ecto-ATPases of as yet unknown function.  相似文献   

19.
The relationship between Rb+ influx and microsomal ATPase activity stimulated by K+ and Mg2++ K+ was investigated for roots of 7-day-old seedlings of oat (Avena sativa L., cv. Brighton). Different concentrations of K+ in the roots, K+root were produced by cultivating plants in complete nutrient solutions of different dilutions and dFifferent K+ concentrations at various temperatures. Experiments were performed in both light and darkness. The range of the influx/ATPase ratios was large with a factor of 5 or more between the highest and lowest values. In most cases, the highest ratios were obtained at low K+root and at high temperatures, and the lowest at high K+root and at low temperatures. At high temperatures (20 and 25°C) in the light, the influx/ATPase ratio was constant, independently of K+root, if K+ in the medium was kept constant but the bulk of the nutrient solution diluted. If K+ was varied and the other components of the medium kept constant, the normal relation of decreasing influx/ATPase ratio at increasing K+root was found; thus, Rb+ influx appears regulated by both the internal and external potassium conditions. Also in darkness, at 15°C and with K + in the medium varied, the influx/ATPase ratio was independent of K+root but in the corresponding light experiments, ratio and K+root had the normal, inverse relationship. The difference between light and dark conditions appears to indicate that growth rate is of importance for the relationship between energy input and transport. Our data lead to the concept of “flexible coupling” between transducers) of energy and ion carrier. Without excluding other possibilities, this may be one of the mechanisms for ecological adaptation to variations in the root medium.  相似文献   

20.
The activities of Ca2+, Mg2+-ATPase and Na+, K+-ATPase and the permeability of reconstituted human erythrocytes for Na and K ions were measured, using Ca2+-EGTA, Ca2+ATP and Ca2+-sodium citrate buffers. It was found that the increase in the Ca2+/chelate ratio caused stimulation of Ca2+, Mg2+- and Na+, K+-Atpases and an increase in the rate constants of ouabain--dependent 42K+ influx and 22Na+ efflux from the erythrocytes. The use of the Ca2+-sodium citrate system as a calcium buffer did not change the parameters of the functional state of erythrocyte membranes. The data obtained are discussed in terms of a possible role of calcium ions, which are bound to the inner surface of the erythrocyte membrane, in the regulation of the systems of active and passive transport of cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号